Skip to main content
Log in

Magnetic properties indicate the sources of hadal sediments in the Yap Trench, northwest Pacific Ocean

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Magnetic minerals in marine sediments are often masked by the primary natural remanent magnetization and material source signals. In order to understand sedimentary environment and sources of sediments in the abyss, we studied 126 samples of five bottom surface cores collected by the Jiaolong Submersible at 4000–7000 m in depth during the third stage of the China’s 38th Ocean Voyage. The magnetic properties of the sediments were analyzed using Thermosusceptibility (k-T) curves and Day plot. The results show that the magnetic minerals in the sediments of the Yap Trench are mainly maghemite, and the overall magnetic and soft magnetic properties were strong. The magnetic particles of sediments are dominated by pseudo single domains (PSD) grains. The main source of sediment is locally-derived basalt debris and volcanic debris, and the process of sedimentation is gravity-like flow deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available on request from the corresponding author.

References

  • Arai K, Naruse H, Miura R, Kawamura K, Hino R, Ito Y, Inazu D, Yokokawa M, Izumi N, Murayama M, Kasaya T. 2013. Tsunami-generated turbidity current of the 2011 Tohoku-Oki earthquake, Geology, 41(11): 1 195–1 198.

    Article  Google Scholar 

  • Borowski W S, Rodriguez N M, Paull C K, Ussler W. 2013. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?, Marine and Petroleum Geology, 43: 381–395.

    Article  Google Scholar 

  • Bridge J, Demicco R. 2011. Earth surface processes, landforms and sediment deposits, Earth Surface Processes & Landforms, 17(1): 92–94.

    Google Scholar 

  • Canfield D E, Olesen C A, Cox R P. 2006. Temperature and its control of isotope fractionation by a sulfate-reducing bacterium. Geochimica et Cosmochimica Acta, 70(3): 548–561.

    Article  Google Scholar 

  • Day R, Fuller M, Schmidt V A. 1977. Hysteresis properties of titanomagnetites: Grain–size and compositional dependence, Physics of the Earth and Planetary Interiors, 13(4): 260–267.

    Article  Google Scholar 

  • Dewangan P, Basavaiah N, Badesab F K, Usapkara A, Mazumdar A, Joshi R, Ramprasad T. 2013. Diagenesis of magnetic minerals in a gas hydrate/cold seep environment off the Krishna-Godavari basin, Bay of Bengal, Marine Geology, 340: 57–70.

    Article  Google Scholar 

  • Dong Y, Li J H, Zhang W C, Zhang W Y, Zhao Y, Xiao T, Wu L F, Pan H M. 2016. The detection of magnetotactic bacteria in deep sea sediments from the east Pacific Manganese Nodule Province, Environmental Microbiology Reports, 8(2): 239–249.

    Article  Google Scholar 

  • Dunlop D J, Özdemir Ö, Schmidt P. W. 1997. Paleomagnetism and paleothermometry of the Sydney Basin 2. Origin of an anomalously high unlocking temperature, The Journal of Geophysical Research: Solid Earth, 102(B12): 27 285–27 295.

    Article  Google Scholar 

  • Dunlop D J, Özdemir Ö. 2001. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, New York. p.1–573.

    Google Scholar 

  • Dura T, Cisternas M, Horton B P, Ely L L, Nelson A R, Wesson R L, Pilarczyk J E. 2015. Coastal evidence for Holocene subduction-zone earthquakes and tsunamis in central Chile, Quaternary Science Reviews, 113: 93–111.

    Article  Google Scholar 

  • Evans M E, Heler F. 2003. Environmental Magnetism. Principles and Applications of Enviromagnetics. Academic Press, San Diego. p.1–299.

    Google Scholar 

  • Fujiwara T, Tamura C, Nishizawa A, Fujioka K, Kobayashi K, Iwabuchi Y. 2000. Morphology and tectonics of the Yap Trench, Marine Geophysical Researches, 21(1–2): 69–86.

    Article  Google Scholar 

  • Gallo N D, Cameron J, Hardy K, Fryer P, Bartlett D H, Levin L A. 2015. Submersible- and lander-observed community patterns in the Mariana and New Britain trenches: Influence of productivity and depth on epibenthic and scavenging communities, Deep Sea Research Part I: Oceanographic Research Papers, 99: 119–133.

    Article  Google Scholar 

  • Geissman J. 2004. Environmental magnetism: principles and applications of enviromagnetics, Eos, Transactions American Geophysical Union, 85(20): 202.

    Article  Google Scholar 

  • Ghafarpour A, Khormali F, Balsam W, Karimi A, Ayoubi S. 2016. Climatic interpretation of loess-paleosol sequences at Mobarakabad and Aghband, Northern Iran, Quaternary Research, 86(1): 95–109.

    Article  Google Scholar 

  • Guan H C, Zhu C, Zhu T X, Wu L, Li Y H. 2016. Grain size, magnetic susceptibility and geochemical characteristics of the loess in the Chaohu lake basin: Implications for the origin, palaeoclimatic change and provenance, Journal of Asian Earth Sciences, 117: 170–183.

    Article  Google Scholar 

  • Jamieson A J, Fujii T, Solan M, Matsumoto A K, Bagley P M, Priede I G. 2009. First findings of decapod crustacea in the hadal zone, Deep Sea Research Part I: Oceanographic Research Papers, 56(4): 641–647.

    Article  Google Scholar 

  • Jiang H. 2010. Dynamical mechanism and depositional responses of turbidity current sedimentation, Oil & Gas Geology, 31 (4): 428–435. (in Chinese with English abstract)

    Google Scholar 

  • Kars M, Musgrave R J, Kodama K, Jonas A S, Bordiga M, Ruebsam W, Mleneck-Vautravers M J, Bauersachs T. 2017. Impact of climate change on the magnetic mineral assemblage in marine sediments from Izu rear arc, NW Pacific Ocean, over the last 1 Myr, Palaeogeography, Palaeoclimatology, Palaeoecology, 480: 53–69.

    Article  Google Scholar 

  • Kawamura N, Kawamura K, Ishikawa N. 2008. Rock magnetic and geochemical analyses of surface sediment characteristics in deep ocean environments: A case study across the Ryukyu Trench, Earth, Planets and Space, 60(3): 179–189.

    Article  Google Scholar 

  • Kim W, Doh S J, Yu Y, Lee Y L. 2013. Magnetic evaluation of sediment provenance in the northern East China Sea using fuzzy c-means cluster analysis, Marine Geology, 337: 9–19.

    Article  Google Scholar 

  • Kirscher U, Winklhofer M, Hackl M, Bachtadse V. 2018. Detailed Jaramillo field reversals recorded in lake sediments from Armenia-Lower mantle influence on the magnetic field revisited, Earth & Planetary Science Letters, 484: 124–134.

    Article  Google Scholar 

  • Kitahashi T, Jenkins R G, Nomaki H, Shimanaga M, Fujikura K, Kojima, S. 2014. Effect of the 2011 Tohoku Earthquake on deep-sea meiofaunal assemblages inhabiting the landward slope of the Japan Trench, Marine Geology, 358: 128–137.

    Article  Google Scholar 

  • Kitajima H, Saffer D M. 2015. Consolidation state of incoming sediments to the Nankai Trough subduction zone: Implications for sediment deformation and properties, Geochemistry, Geophysics, Geosystems, 15(7): 2 821–2 839.

    Article  Google Scholar 

  • Li B, Wang Y, Zhong H X, Zhang J Y, Li S, Li X J, Gao H F. 2016. Magnetic properties of turbidites in the Huatung Basin and their environmental implications, Chinese Journal of Geophysics, 59(9): 3 330–3 342. (in Chinese with English abstract)

    Google Scholar 

  • Li B, Li S, Wang Y, Zhang J Y, Li X J, Zhong H X, Tian C J. 2015. Magnetostratigraphy of core gx149 from the West Philippine Sea, Marine Geology Frontiers, 31(8): 34–40. (in Chinese with English abstract)

    Google Scholar 

  • Liu J, Zhu R X, Li T G, Li A C, Li J. 2007. Sediment magnetic signature of the mid-Holocene paleoenvironmental change in the central Okinawa Trough, Marine Geology, 239(1–2): 19–31.

    Article  Google Scholar 

  • Liu Q, Banerjee S K, Jackson M J, Chen F H, Pan Y X, Zhu R X. 2003. An integrated study of the grain-size-dependent magnetic mineralogy of the Chinese loess/paleosol and its environmental significance, Journal of Geophysical Research, 108(B9): 2 437.

    Article  Google Scholar 

  • Liu S M, Zhang W G, He Q, Li D J, Liu H, Yu L Z. 2010. Magnetic properties of East China Sea shelf sediments off the Yangtze Estuary: influence of provenance and particle size, Geomorphology, 119(3–4): 212–220.

    Article  Google Scholar 

  • Lund S, Oppo D, Curry W. 2017. Late Quaternary paleomagnetic secular variation recorded in deep-sea sediments from the Demerara Rise, equatorial West Atlantic Ocean, Physics of the Earth & Planetary Interiors, 272: 17–26.

    Article  Google Scholar 

  • Maher B A, Thompson R. 1999. Quaternary Climates, Environments and Magnetism. Cambridge University Press, Cambridge. p.390.

  • Meng Q Y, Li A C, Jing N, Xu Z K, Liu J G. 2006. Magnetostratigraphic and magnetic properties of marine sediments from the East Philippine Sea, Marine Geology & Quaternary Geology, 26(3): 57–63. (in Chinese with English abstract)

    Google Scholar 

  • Novosel I, Spence G D, Hyndman R D. 2005. Reduced magnetization produced by increased methane flux at a gas hydrate vent, Marine Geology, 216(4): 265–274.

    Article  Google Scholar 

  • Oldfield F. 1994. Toward the discrimination of fine-grained ferrimagnets by magnetic measurements in lake and near-shore marine sediments, Journal of Geophysical Research: Solid Earth, 99(B5): 9 045–9 050.

    Article  Google Scholar 

  • Pautot G, Nakamura K, Huchon P, Angelier J, Bourgois J, Fujioka K, Kanazawa T, Nakamura Y, Ogawa Y, Séguret M, Takeuchi A. 1987. Deep-sea submersible survey in the Suruga, Sagami and Japan Trenches: preliminary results of the 1985 Kaiko cruise, Leg 2, Earth and Planetary Science Letters, 83(1–4): 300–312.

    Article  Google Scholar 

  • Prajith A, Rao V P, Kessarkar P M. 2015. Magnetic properties of sediments in cores from the Mandovi estuary, western India: Inferences on provenance and pollution, Marine Pollution Bulletin, 99(1–2): 338–345.

    Article  Google Scholar 

  • Riisager P, Riisager J, Abrahamsen N, Waagstein R. 2002. New paleomagnetic pole and magnetostratigraphy of Faroe Islands flood volcanics, North Atlantic igneous province, Earth and Planetary Science Letters, 201(2): 261–276.

    Article  Google Scholar 

  • Roza J, Jackson B, Heaton E, Negrini R. 2016. Paleomagnetic secular variation and environmental magnetism of Holocene-age sediments from Tulare Lake, CA, Quaternary Research, 85(3): 391–398.

    Article  Google Scholar 

  • Sim M S, Bosak T, Ono S. 2011. Large sulfur isotope fractionation does not require disproportionation, Science, 333(6038): 74–77.

    Article  Google Scholar 

  • Thompson R, Oldfield F. 1986. Environmental Magnetism. Allen & Unwin Press, Sydney. p.45.

    Book  Google Scholar 

  • Yang J C, Cui Z, Dada O A, Yang Y M, Yu H J, Xu Y, Lin Z L, Chen Y, Tang X. 2018. Distribution and enrichment of trace metals in surface marine sediments collected by the manned submersible Jiaolong in the Yap Trench, northwest Pacific Ocean, Marine Pollution Bulletin, 135: 1 035–1 041.

    Article  Google Scholar 

  • Yang T, Dekkers M J, Zhang B. 2016. Seismic heating signatures in the Japan Trench subduction plate-boundary fault zone: evidence from a preliminary rock magnetic ‘geothermometer’, Geophysical Journal International, 205(1): 332–344.

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Professor Wang Weiguo and Dr Liu Jianxing for providing insightful comments on this paper, and the anonymous reviewers for their constructive comments and helpful suggestions, which have improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichao Yang.

Additional information

Supported by the National Basic Research Program of China (973 Program) (No. 2015CB755901), the Taishan Scholar Project Funding (No. tspd2016007), the 13th Five-Year Plan Program of the China Ocean Mineral Resources Research and Development Association Research (No. DY135-S2-2-08), the China Postdoctoral Science Foundation (No. 2017M610403), and the National Key R&D Program of China (Nos. 2018YFC0309802, 2018YFC0309903)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yang, J., Dada, O.A. et al. Magnetic properties indicate the sources of hadal sediments in the Yap Trench, northwest Pacific Ocean. J. Ocean. Limnol. 38, 665–678 (2020). https://doi.org/10.1007/s00343-019-8370-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-8370-z

Keyword

Navigation