Skip to main content
Log in

Comparison of sedimentary organic carbon loading in the Yap Trench and other marine environments

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Knowledge about organic carbon loadings (ratio of sedimentary organic carbon (SOC) content to specific surface area (SSA)) and the fate of organic carbon (OC) is critical to understand the marine carbon cycle. We investigated the variations in the patterns of OC loadings and the preservation capacities of sedimentary OC in the Yap Trench and other marine environments. The average OC loading in sediment cores from various marine environments decreases with increasing water depth at a rate of ~0.06 mg OC/(m2·km) (R2 =0.23, P<0.01). Distinct low OC loadings (0.09±0.04 mg OC/m2) were observed in the Yap Trench, with the lowest values as ~0.02 mg OC/m2. A further comparative analysis indicated that OC/SSA=0.2 mg OC/m2 is a good indicator to distinguish between oxic deep-sea regions and suboxic energetic deltaic areas. Regression analysis between OC loading and bulk carbon isotope compositions indicates that marine OC (δ13C ~−20.4‰ to −18.6‰) dominates the lost OC within the Yap Trench and does not differ from that of the abyssal zone. In contrast, terrestrial OC with δ13C values of approximately −27.4‰ to −20.5‰ was the major source of remineralized OC in the sublittoral zone. The ratios of OC loadings in the bottom layer relative to those in the top layers of sediment cores indicate that the preservation capacities of hadal trenches are much lower than those of other environments, and only approximately 30% of the SOC deposited in hadal trenches is finally buried. The value is equivalent to 0.066% of the primary production-derived OC and much lower than the global ocean average (~0.3%). Overall, the hadal zone exhibits the lowest OC loading and preservation capacity of SOC of the different marine environments investigated, despite the occurrence of a notable funneling effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The authors declare that the data supporting the findings of this study are available within the article and its electronic supplementary files. And the data in this study are also available from the authors upon reasonable request.

References

  • Alin S R, Aalto R, Goni M A, Richey J E, Dietrich W E. 2008. Biogeochemical characterization of carbon sources in the Strickland and Fly rivers, Papua New Guinea. Journal of Geophysical Research: Earth Surface, 113: F01S05, https://doi.org/10.1029/2006JF000625.

    Article  Google Scholar 

  • Aller R C. 1998. Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors. Marine Chemistry, 61(3–4): 143–155.

    Article  Google Scholar 

  • Aller R C, Blair N E. 2004. Early diagenetic remineralization of sedimentary organic C in the Gulf of Papua deltaic complex (Papua New Guinea): net loss of terrestrial C and diagenetic fractionation of C isotopes. Geochimica et Cosmochimica Acta, 68(8): 1 815–1 825.

    Article  Google Scholar 

  • Aller R C, Blair N E. 2006. Carbon remineralization in the Amazon-Guianas tropical mobile mudbelt: a sedimentary incinerator. Continental Shelf Research, 26(17–18): 2 241–2 259.

    Article  Google Scholar 

  • Aller R C, Blair N E, Brunskill G J. 2008. Early diagenetic cycling, incineration, and burial of sedimentary organic carbon in the central Gulf of Papua (Papua New Guinea). Journal of Geophysical Research: Earth Surface, 113(F1): F01S09, https://doi.org/10.1029/2006JF000689.

    Google Scholar 

  • Aller R C, Mackin J E, Ullman W J, Wang C H, Tsai S M, Jin J C, Sui Y N, Hong J Z. 1985. Early chemical diagenesis, sediment-water solute exchange, and storage of reactive organic matter near the mouth of the Changjiang, East China Sea. Continental Shelf Research, 4(1–2): 227–251.

    Article  Google Scholar 

  • Aller R C, Madrid V, Chistoserdov A, Aller J Y, Heilbrun C. 2010. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: implications for oceanic isotope cycles and the sedimentary record. Geochimica et Cosmochimica Acta, 74(16): 4 671–4 692.

    Article  Google Scholar 

  • Amon R M W. 2016. Ocean dissolved organics matter. Nature Geoscience, 9(12): 864–865.

    Article  Google Scholar 

  • Bao R, Strasser M, McNichol A P, Haghipour N, Mclntyre C, Wefer G, Eglinton T I. 2018. Tectonically-triggered sediment and carbon export to the hadal zone. Nature Communications, 9(1): 121.

    Article  Google Scholar 

  • Barber A, Brandes J, Leri A, Lalonde K, Balind K, Wirick S, Wang J, Gélinas Y. 2017. Preservation of organic matter in marine sediments by inner-sphere interactions with reactive iron. Scientific Reports, 7(1): 366.

    Article  Google Scholar 

  • Bergamaschi B A, Tsamakis E, Keil R G, Eglinton T I, Montluçon D B, Hedges J I. 1997. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments. Geochimica et Cosmochimica Acta, 61(6): 1 247–1 260.

    Article  Google Scholar 

  • Blair N E, Aller R C. 2012. The fate of terrestrial organic carbon in the marine environment. Annual Review of Marine Science, 4(1): 401–423.

    Article  Google Scholar 

  • Bröder L, Tesi T, Andersson A, Eglinton T I, Semiletov I P, Dudarev O V, Roos P, Gustafsson Ö. 2016. Historical records of organic matter supply and degradation status in the East Siberian Sea. Organic Geochemistry, 91: 16–30.

    Article  Google Scholar 

  • Chen J F, Jin H Y, Li H L, Zhang H S, Ji Z Q, Zhuang Y P, Bai Y C. 2015. Carbon sink mechanism and processes in the Arctic Ocean under arctic rapid change. Chinese Science Bulletin, 60(35): 3 406–3 416.

    Article  Google Scholar 

  • Chen J F, Zhang H S, Jin H Y, Jin M M, Liu Z L. 2004. Accumulation of sedimentary organic carbon in the arctic shelves and its significance on global carbon budget. Chinese Journal of Polar Research, 16(3): 193–201. (in Chinese with English abstract)

    Google Scholar 

  • Clift P, Vannucchi P. 2004. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Reviews of Geophysics, 42(2): RG2001, https://doi.org/10.1029/2003RG000127.

    Article  Google Scholar 

  • Conte M H, Ralph N, Ross E H. 2001. Seasonal and interannual variability in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series (BATS) site in the western Sargasso Sea near Bermuda. Deep Sea Research Part II: Topical Studies in Oceanography, 48(8–9): 1 471–1 505.

    Article  Google Scholar 

  • Danovaro R, Croce N D, Dell’Anno A, Pusceddu A. 2003. A depocenter of organic matter at 7800 m depth in the SE Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 50(12): 1 411–1 420.

    Article  Google Scholar 

  • Dixit S, van Cappellen P, van Bennekom A J. 2001. Processes controlling solubility of biogenic silica and pore water build-up of silicic acid in marine sediments. Marine Chemistry, 73(3–4): 333–352.

    Article  Google Scholar 

  • Falkowski P G, Barber R T, Smetacek V. 1998. Biogeochemical controls and feedbacks on ocean primary production. Science, 281(5374): 200–206.

    Article  Google Scholar 

  • Francisquini M I, Lima C M, Pessenda L C R, Rossetti D F, França M C, Cohen M C L. 2014. Relation between carbon isotopes of plants and soils on Marajó Island, a large tropical island: implications for interpretation of modern and past vegetation dynamics in the Amazon region. Palaeogeography, Palaeoclimatology, Palaeoecology, 415: 91–104.

    Article  Google Scholar 

  • Fujio S, Yanagimoto D, Taira K. 2000. Deep current structure above the Izu-Ogasawara Trench. Journal of Geophysical Research: Oceans, 105(C3): 6 377–6 386.

    Article  Google Scholar 

  • Fujiwara T, Tamura C, Nishizawa A, Fujioka K, Kobayashi K, Iwabuchi Y. 2000. Morphology and tectonics of the Yap Trench. Marine Geophysical Researches, 21(1–2): 69–86.

    Article  Google Scholar 

  • Glud R N, Wenzhöfer F, Middelboe M, Oguri K, Turnewitsch R, Canfield D E, Kitazato H. 2013. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nature Geoscience, 6(4): 284–288.

    Article  Google Scholar 

  • Goñi M A, O’Connor A E, Kuzyk Z Z, Yunker M B, Gobeil C, Macdonald R W. 2013. Distribution and sources of organic matter in surface marine sediments across the North American Arctic margin. Journal of Geophysical Research: Oceans, 118(9): 4 017–4 035.

    Google Scholar 

  • Hallock Z R, Teague W J. 1996. Evidence for a North Pacific deep western boundary current. Journal of Geophysical Research: Oceans, 101(C3): 6 617–6 624.

    Article  Google Scholar 

  • Hartnett H E, Keil R G, Hedges J I, Devol A H. 1998. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature, 391(6667): 572–575.

    Article  Google Scholar 

  • Henrichs S M, Reeburgh W S. 1987. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiology Journal, 5(3–4): 191–237.

    Article  Google Scholar 

  • Honjo S, Manganini S J, Krishfield R A, Francois R. 2008. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Progress in Oceanography, 76(3): 217–285.

    Article  Google Scholar 

  • Hung C C, Tseng C W, Gong G C, Chen K S, Chen M H, Hsu S C. 2013. Fluxes of particulate organic carbon in the East China Sea in summer. Biogeosciences, 10(10): 6 469–6 484.

    Article  Google Scholar 

  • Ichino M C, Clark M R, Drazen J C, Jamieson A, Jones D O B, Martin A P, Rowden A A, Shank T M, Yancey P H, Ruhl H A. 2015. The distribution of benthic biomass in hadal trenches: a modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep Sea Research Part I: Oceanographic Research Papers, 100: 21–33.

    Article  Google Scholar 

  • Jamieson A. 2015. The Hadal Zone: Life in the Deepest Oceans. England: Cambridge University Press.

    Book  Google Scholar 

  • Jamieson A J, Fujii T. 2011. Trench connection. Biology Letters, 7(5): 641–643.

    Article  Google Scholar 

  • Keil R G, Mayer L M, Quay P D, Richey J E, Hedges J I. 1997b. Loss of organic matter from riverine particles in deltas. Geochimica et Cosmochimica Acta, 61(7): 1 507–1 511.

    Article  Google Scholar 

  • Keil R G, Tsamakis E, Fuh C B, Giddings J C, Hedges J I. 1994. Mineralogical and textural controls on the organic composition of coastal marine sediments: hydrodynamic separation using SPLITT-fractionation. Geochimica et Cosmochimica Acta, 58(2): 879–893.

    Article  Google Scholar 

  • Keil R G, Tsamakis E, Wolf N, Hedges J I, Goñi M. 1997a. 33. Relationships between organic carbon preservation and mineral surface area in Amazon fan sediments (Holes 932A and 942A). In: Flood R D, Piper D J W, Klaus A, Peterson L C eds. Proceedings of the Ocean Drilling Program, Scientific Results, 155: 531–538.

    Google Scholar 

  • Lalonde K, Mucci A, Ouellet A, Gélinas Y. 2012. Preservation of organic matter in sediments promoted by iron. Nature, 483(7388): 198–200.

    Article  Google Scholar 

  • Lasaga A C, Berner R A, Garrels R M. 1985. An improved geochemical model of atmospheric CO2 fluctuations over the past 100 million years. In: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Volume 32. American Geophysical Union, 397–411, https://doi.org/10.1029/GM032p0397.

    Google Scholar 

  • Li D, Yao P, Bianchi T S, Zhang T T, Zhao B, Pan H H, Wang J P, Yu Z G. 2014. Organic carbon cycling in sediments of the Changjiang Estuary and adjacent shelf: implication for the influence of Three Gorges Dam. Journal of Marine Systems, 139: 409–419.

    Article  Google Scholar 

  • Li D, Zhao J, Liu C G, Sun C J, Chen J F, Pan J M, Yang Z, Wang K, Han Z B, Yu P S. 2018. Advances of living environment characteristics and biogeochemical processes in the hadal zone. Earth Science, (S2): 162–178. (in Chinese with English abstract)

    Google Scholar 

  • Li X X, Bianchi T S, Allison M A, Chapman P, Mitra S, Zhang Z R, Yang G P, Yu Z G. 2012. Composition, abundance and age of total organic carbon in surface sediments from the inner shelf of the East China Sea. Marine Chemistry, 145–147: 37–52.

    Article  Google Scholar 

  • Li Z Q, Wang X Y, Jin H Y, Ji Z Q, Bai Y C, Chen J F. 2017. Variations in organic carbon loading of surface sediments from the shelf to the slope of the Chukchi Sea, Arctic Ocean. Acta Oceanologica Sinica, 36(8): 131–136.

    Article  Google Scholar 

  • Longhurst A, Sathyendranath S, Platt T, Caverhill C. 1995. An estimate of global primary production in the ocean from satellite radiometer data. Journal of Plankton Research, 17(6): 1 245–1 271.

    Article  Google Scholar 

  • Loucaides S, Behrends T, van Cappellen P. 2010. Reactivity of biogenic silica: surface versus bulk charge density. Geochimica et Cosmochimica Acta, 74(2): 517–530.

    Article  Google Scholar 

  • Loucaides S, van Cappellen P, Roubeix V, Moriceau B, Ragueneau O. 2012. Controls on the recycling and preservation of biogenic silica from biomineralization to burial. Silicon, 4(1): 7–22.

    Article  Google Scholar 

  • Luo M, Gieskes J, Chen L Y, Shi X F, Chen D F. 2017. Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope: implication for carbon cycle and burial in hadal trenches. Marine Geology, 386: 98–106.

    Article  Google Scholar 

  • Lutz M J, Caldeira K, Dunbar R B, Behrenfeld M J. 2007. Seasonal rhythms of net primary production andparticulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. Journal of Geophysical Research: Oceans, 112(C10): C10011, https://doi.org/10.1029/2006JC003706.

    Article  Google Scholar 

  • Mayer L M. 1994a. Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chemical Geology, 114(3–4): 347–363.

    Article  Google Scholar 

  • Mayer L M. 1994b. Surface area control of organic carbon accumulation in continental shelf sediments. Geochimica et Cosmochimica Acta, 58(4):1 271–1 284.

    Article  Google Scholar 

  • Mayer L M. 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis—a comment. Marine Chemistry, 49(2–3): 123–126.

    Article  Google Scholar 

  • Muller P J, Suess E. 1980. Productivity, sedimentation rate, and sedimentary organic matter in the oceans—I. organic carbon preservation. Deep Sea Research Part A. Oceanographic Research Papers, 26(12): 1 347–1 362.

    Article  Google Scholar 

  • Nakatsuka T, Handa N, Harada N, Sugimoto T, Lmaizumi S. 1997. Origin and decomposition of sinking particulate organic matter in the deep water column inferred from the vertical distributions of its °15N, °13C and °14C. Deep Sea Research Part I: Oceanographic Research Papers, 44(12): 1 957–1 979.

    Article  Google Scholar 

  • Nakatsuka T, Hosokawa A, Handa N, Matsumoto E, Masuzawa T. 2000. 14C budget of sinking particulate organic matter in the Japan Trench: a new approach to estimate the contribution from resuspended particles in deep water column. In: Handa N, Tanoue E, Hama T eds. Dynamics and Characterization of Marine Organic Matter. Ocean Sciences Research. Dordrecht: Springer, 2: 169–186.

    Article  Google Scholar 

  • Nath B N, Khadge N H, Nabar S, Kumar C R, Ingole B S, Valsangkar A B, Sharma R, Srinivas K. 2012. Monitoring the sedimentary carbon in an artificially disturbed deep-sea sedimentary environment. Environmental Monitoring and Assessment, 184(5): 2 829–2 844.

    Article  Google Scholar 

  • Nielsen M E, Fisk M R. 2008. Data report: specific surface area and physical properties of subsurface basalt samples from the east flank Juan de Fuca Ridge. In: Proceedings of the Integrated Ocean Drilling Program, Volume 301.

    Google Scholar 

  • Nielsen M E, Fisk M R. 2010. Surface area measurements of marine basalts: implications for the subseafloor microbial biomass. Geophysical Research Letters, 37(15): L15604, https://doi.org/10.1029/2010GL044074.

    Article  Google Scholar 

  • Nozaki Y, Ohta Y. 1993. Rapid and frequent turbidite accumulation in the bottom of Izu-Ogasawara Trench: chemical and radiochemical evidence. Earth and Planetary Science Letters, 120(3–4): 345–360.

    Article  Google Scholar 

  • Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A, Koide O, Kikuchi T, Miyazaki J, Koba K, Yoshida N, Sunamura M, Takai K. 2015. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proceedings of the National Academy of Sciences of the United States of America, 112(11): E1 230–E1 236.

    Article  Google Scholar 

  • Oguri K, Kawamura K, Sakaguchi A, Toyofuku T, Kasaya T, Murayama M, Fujikura K, Glud R N, Kitazato H. 2013. Hadal disturbance in the Japan Trench induced by the 2011 Tohoku-Oki Earthquake. Scientific Reports, 3: 1 915.

    Article  Google Scholar 

  • Peterson M L, Wakeham S G, Lee C, Askea M A, Miquel J C. 2005. Novel techniques for collection of sinking particles in the ocean and determining their settling rates. Limnology and Oceanography: Methods, 3(12): 520–532.

    Google Scholar 

  • Smith W O Jr, Demaster D J. 1996. Phytoplankton biomass and productivity in the Amazon River plume: correlation with seasonal river discharge. Continental Shelf Research, 16(3): 291–319.

    Article  Google Scholar 

  • Taira K, Kitagawa S, Yamashiro T, Yanagimoto D. 2004. Deep and bottom currents in the challenger deep, mariana trench, measured with super-deep current meters. Journal of Oceanography, 60(6): 919–926.

    Article  Google Scholar 

  • Tao J, Ma W W, Li W J, Li T, Zhu M X. 2017. Organic carbon preservation by reactive iron oxides in South Yellow Sea sediments. Haiyang Xuebao, 39(8): 16–24. (in Chinese with English abstract)

    Google Scholar 

  • Tesi T, Semiletov I, Dudarev O, Andersson A, Gustafsson O. 2016. Matrix association effects on hydrodynamic sorting and degradation of terrestrial organic matter during cross-shelf transport in the Laptev and East Siberian shelf seas. Journal of Geophysical Research: Biogeosciences, 121(6): 731–752.

    Google Scholar 

  • Vonk J E, Giosan L, Blusztajn J, Montlucon D, Graf Pannatier E, McIntyre C, Wacker L, Macdonald R W, Yunker M B, Eglinton T I. 2015. Spatial variations in geochemical characteristics of the modern Mackenzie Delta sedimentary system. Geochimica et Cosmochimica Acta, 171: 100–120.

    Article  Google Scholar 

  • Vonk J E, Sanchez-Garcia L, van Dongen B E, Alling V, Kosmach D, Charkin A, Semiletov I P, Dudarev O V, Shakhova N, Roos P, Eglinton T I, Andersson A, Gustafsson O. 2012. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature, 489(7414): 137–140.

    Article  Google Scholar 

  • Wang Y Y, Wang H, He J S, Feng X J. 2017. Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nature Communications, 8: 15 972.

    Article  Google Scholar 

  • Wu B, Li D, Zhao J, Liu C G, Sun C J, Chen J F, Pan J M, Han Z B, Hu J. 2018a. Influence of sedimentary environment on composition and distribution of sediments in the Yap Trench. Haiyang Xuebao, 40(10): 167–179. (in Chinese with English abstract)

    Google Scholar 

  • Wu B, Li D, Zhao J, Liu C G, Sun C J, Chen J F, Pan J M, Han Z B, Hu J. 2018b. Vertical distribution of sedimentary organic carbon in the yap trench and its implications. China Environmental Science, 38(9): 3 502–3 511. (in Chinese with English abstract)

    Google Scholar 

  • Yao P, Yu Z G, Bianchi T S, Guo Z G, Zhao M X, Knappy C S, Keely B J, Zhao B, Zhang T T, Pan H H, Wang J P, Li D. 2015. A multiproxy analysis of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf. Journal of Geophysical Research: Biogeosciences, 120: 1 407–1 429.

    Google Scholar 

  • Yao P, Zhao B, Bianchi T S, Guo Z G, Zhao M X, Li D, Pan H H, Wang J P, Zhang T T, Yu Z G. 2014. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: implications for carbon preservation and authigenic mineral formation. Continental Shelf Research, 91: 1–11.

    Article  Google Scholar 

  • Yue X A, Yan Y X, Ding H B, Sun C J, Yang G P. 2018. Biological geochemical characteristics of the sediments in the yap trench and its oceanographic significance. Periodical of Ocean University of China, 48(3): 88–96. (in Chinese with English abstract)

    Google Scholar 

  • Zhang H S, Yu P S, Ni J Y, Wu G H, Sun W P, Lu B. 2008. Geochemical contrast of the physical properties, the source characters and the depositional environment of the organic matter from the different strata of the equatorial Pacific area. Acta Oceanologica Sinica, 30(6): 60–68. (in Chinese with English abstract)

    Google Scholar 

  • Zhao B, Yao P, Yu Z G. 2016. The effect of organic carbon-iron oxide association on the preservation of sedimentary organic carbon in marine environments. Advances in Earth Science, 31(11): 1 151–1 158. (in Chinese with English abstract)

    Google Scholar 

  • Zhu M X, Shi X N, Yang G P, Li T, Lv R Y. 2011. Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments: an overview. Advances in Earth Science, 26(4): 355–364. (in Chinese with English abstract)

    Google Scholar 

  • Zonneveld K A F, Versteegh G J M, Kasten S, Eglinton T I, Emeis K C, Koch B P, de Lange G J, de Leeuw J W, Middelburg J J, Mollenhauer G, Prahl F G, Rethemeyer J, Wakeham S G. 2010. Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record. Biogeosciences, 7(2): 483–511.

    Article  Google Scholar 

Download references

Acknowledgment

We are grateful to the crews of the R/V Xiangyanghong 10, LU Bo, LI Zhongqiao, ZHU Qiuhong, and GUO Xiaoze in the Second Institute of Oceanography (MNR), and PENG Yao, WU Dan and YE Jun of the Ocean University of China for their help in sampling and technical support with analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhao.

Additional information

Supported by the National Natural Science Foundation of China (No. 41606090), the National Key Basic Research and Development Project of China (No. 2015CB755904), and the Scientific Research Fund of the Second Institute of Oceanography (MNR) (Nos. JG1624, JG1516)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Zhao, J., Liu, C. et al. Comparison of sedimentary organic carbon loading in the Yap Trench and other marine environments. J. Ocean. Limnol. 38, 619–633 (2020). https://doi.org/10.1007/s00343-019-8365-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-8365-9

Keyword

Navigation