Advertisement

Journal of Oceanology and Limnology

, Volume 37, Issue 5, pp 1714–1725 | Cite as

High-throughput sequencing of 16S rRNA amplicons characterizes gut microbiota shift of juvenile sea cucumber Apostichopus japonicus feeding with three antibiotics

  • Ye ZhaoEmail author
  • Qing Wang
  • Hui LiuEmail author
  • Bingjun Li
  • Hongxia Zhang
Aquaculture and Fisheries
  • 22 Downloads

Abstract

Sea cucumber Apostichopus japonicus is an important marine economic species in Asian countries due to its profound nutritional and medicinal value. So far, with the rapid development of intensified artificial aquaculture of sea cucumbers, the use of antibiotics is still an inexpensive and dispensable way to treat pathogenic infections, especially during the nursery phase. However, there is little information on the effects of antibiotics on the intestinal microbiota of sea cucumber. Therefore an Illumina based sequencing method was used to examine the intestinal bacterial composition of juvenile A. japonicas following diets with three typical antibiotics (tetracycline, erythromycin, and norfloxacin) under 15, 30, and 45 d. The findings reveal that different antibiotics have distinct effects on the growth performance of juvenile sea cucumbers. However, the richness and diversity of microbiota were barely affected by antibiotics but the community composition alterations indicated that the three antibiotics exhibited their respective patterns of reshaping the intestinal bacteria of juvenile sea cucumbers. In common, the abundance of some sensitive genera with helpful functions, such as Thalassotalea, Shewanella, Sulfitobacter, and Halomonas decreased significantly with exposure to antibiotics and the abundance of multiple potential pathogenic- and suspected antibiotic-resistant microorganisms like Arcobacter, Leucothrix, and Clostridium_sensu_stricto_1 was found increased significantly in the antibiotic groups. These results suggest that low doses of antibiotics could affect the composition of the intestinal microbiota of sea cucumbers and might increase the risk of infection of the hosts. This study could help us to explore how antibacterial compounds modify the gut microbiota of sea cucumbers and provide theoretical guidance in hatchery management by scientific antibiotic use in sea cucumber mariculture.

Keyword

gut microbiota sea cucumber antibiotic 16S rRNA gene illumina sequencing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

7 Acknowledgement

The authors thank TAO Tengzhou and WANG Xinyu (Yantai University) for sample collection.

Supplementary material

343_2019_8308_MOESM1_ESM.pdf (554 kb)
Appendix

References

  1. Angelakis E, Merhej V, Raoult D. 2013. Related actions of probiotics and antibiotics on gut microbiota and weight modification. The Lancet Infectious Diseases, 13(10): 889–899,  https://doi.org/10.1016/S1473-3099(13)70179-8.CrossRefGoogle Scholar
  2. Austin B, Al-Zahrani A J. 1988. The effect of antimicrobial compounds on the gastrointestinal microflora of rainbow trout, Salmo gairdneri Richardson. Journal of Fish Biology, 33(1): 1–14,  https://doi.org/10.1111/j.1095-8649.1988.tb05444.x.CrossRefGoogle Scholar
  3. Becattini S, Taur Y, Pamer E G. 2016. Antibiotic-induced changes in the intestinal microbiota and disease. Trends in Molecular Medicine, 22(6): 458–478,  https://doi.org/10.1016/j.molmed.2016.04.003.CrossRefGoogle Scholar
  4. Becker P T, Egea E, Eeckhaut I. 2008. Characterization of the bacterial communities associated with the bald sea urchin disease of the echinoid Paracentrotus lividus. Journal of Invertebrate Pathology, 98(2): 136–147,  https://doi.org/10.1016/j.jip.2007.12.002.CrossRefGoogle Scholar
  5. Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336,  https://doi.org/10.1038/nmeth.003.CrossRefGoogle Scholar
  6. Carding S, Verbeke K, Vipond D T, Corfe B M, Owen L J. 2015. Dysbiosis of the gut microbiota in disease. Microbial Ecology in Health and Disease, 26: 26 191.CrossRefGoogle Scholar
  7. Carlson J M, Leonard, A B, Hyde E R, Petrosino J F, Primm T P. 2017. Microbiome disruption and recovery in the fish Gambusia affinis following exposure to broad-spectrum antibiotic. Infection & Drug Resistance, 10: 143–154,  https://doi.org/10.2147/IDR.S129055.CrossRefGoogle Scholar
  8. Carvalho I T, Santos L. 2016. Antibiotics in the aquatic environments: a review of the European scenario. Environment International, 94: 736–757,  https://doi.org/10.1016/j.envint.2016.06.025.CrossRefGoogle Scholar
  9. Chen Q L, An X L, Li H, Su J Q, Ma Y B, Zhu Y G. 2016. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environment International, 92–93: 1–10,  https://doi.org/10.1016/j.envint.2016.03.026.CrossRefGoogle Scholar
  10. Collado L, Figueras M J. 2011. Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter. Clinical Microbiology Reviews, 24(1): 174–192,  https://doi.org/10.1128/CMR.00034-10.CrossRefGoogle Scholar
  11. Deng H, He C B, Zhou Z C, Liu C, Tan K F, Wang N B, Jiang B, Gao X G, Liu W D. 2009. Isolation and pathogenicity of pathogens from skin ulceration disease and viscera ejection syndrome of the sea cucumber Apostichopus japonicus. Aquaculture, 287(1–2): 18–27,  https://doi.org/10.1016/j.aquaculture.2008.10.015.CrossRefGoogle Scholar
  12. DiBaise J K, Zhang H S, Crowell M D, Krajmalnik-Brown R, Decker G A, Rittmann B E. 2008. Gut microbiota and its possible relationship with obesity. Mayo Clinic Proceedings, 83(4): 460–469,  https://doi.org/10.4065/83.4.460.CrossRefGoogle Scholar
  13. Edgar R C, Haas B J, Clemente J C, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16): 2 194–2 200,  https://doi.org/10.1093/bioinformatics/btr381.CrossRefGoogle Scholar
  14. Flint H J, Scott K P, Louis P, Duncan S H. 2012. The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology & Hepatology, 9(10): 577–589,  https://doi.org/10.1038/nrgastro.2012.156.CrossRefGoogle Scholar
  15. Gao F, Li F H, Tan J, Yan J P, Sun H L. 2014. Bacterial community composition in the gut content and ambient sediment of sea cucumber Apostichopus japonicus revealed by 16S rRNA gene pyrosequencing. PLoS One, 9(6): e100092,  https://doi.org/10.1371/journal.pone.0100092.CrossRefGoogle Scholar
  16. Gutiérrez-Salazar G J, Molina-Garza Z J, Hernández-Acosta M, Garcia-Salas J A, Mercado-Hernández R, Galaviz-Silva L. 2011. Pathogens in pacific white shrimp (Litopenaeus vannamei Boone, 1931) and their relationship with physicochemical parameters in three different culture systems in Tamaulipas, Mexico. Aquaculture, 321(1–2): 34–40,  https://doi.org/10.1016/j.aquaculture.2011.08.032.CrossRefGoogle Scholar
  17. Han B, Sivaramakrishnan P, Lin C C J, Neve I A A, He J Q, Tay L W R, Sowa J N, Sizovs A, Du G W, Wang J, Herman C, Wang M C. 2017. Microbial genetic composition tunes host longevity. Cell, 169(7): 1 249–1 262.e13,  https://doi.org/10.1016/j.cell.2017.05.036.CrossRefGoogle Scholar
  18. Jakobsson H E, Jernberg C, Andersson A F, Sjölund-Karlsson M, Jansson J K, Engstrand L. 2010. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One, 5(3): e9836,  https://doi.org/10.1371/journal.pone.0009836.CrossRefGoogle Scholar
  19. Jiang H F, Liu X L, Chang Y Q, Liu M T, Wang G X. 2013. Effects of dietary supplementation of probiotic Shewanella colwelliana WA64, Shewanella olleyana WA65 on the innate immunity and disease resistance of abalone, Haliotis discus hannai Ino. Fish & Shellfish Immunology, 35(1): 86–91,  https://doi.org/10.1016/j.fsi.2013.04.009.CrossRefGoogle Scholar
  20. Li W H, Gao L H, Shi Y L, Liu J M, Cai Y Q. 2015. Occurrence, distribution and risks of antibiotics in urban surface water in Beijing, China. Environmental Science: Processes & Impacts, 17(9): 1 611–1 619,  https://doi.org/10.1039/C5EM00216H.Google Scholar
  21. Liao Y L. 1997. Fauna Sinica: Phylum Enchinodermata Class Holothuroidea. Science Press, Beijing. p.148–150. (in Chinese)Google Scholar
  22. Liu H D, Wang L, Liu M, Wang B J, Jiang K Y, Ma S S, Li Q F. 2011. The intestinal microbial diversity in Chinese shrimp (Fenneropenaeus chinensis) as determined by PCR-DGGE and clone library analyses. Aquaculture, 317(1–4): 32–36,  https://doi.org/10.1016/j.aquaculture.2011.04.008.CrossRefGoogle Scholar
  23. Loo V G, Bourgault A M, Poirier L, Lamothe F, Michaud S, Turgeon N, Toye B, Beaudoin A, Frost E H, Gilca R, Brassard P, Dendukuri N, Béliveau C, Oughton M, Brukner I, Dascal A. 2011. Host and pathogen factors for Clostridium difficile infection and colonization. The New England Journal of Medicine, 365(18): 1 693–1 703,  https://doi.org/10.1056/NEJMoa1012413.CrossRefGoogle Scholar
  24. Magoč T, Salzberg S L. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27(21): 2 957–2 963,  https://doi.org/10.1093/bioinformatics/btr507.CrossRefGoogle Scholar
  25. Navarrete P, Mardones P, Opazo R, Espejo R, Romero J. 2008. Oxytetracycline treatment reduces bacterial diversity of intestinal microbiota of Atlantic salmon. Journal of Aquatic Animal Health, 20(3): 177–183,  https://doi.org/10.1577/H07-043.1.CrossRefGoogle Scholar
  26. Panda S, El Khader I, Casellas F, López Vivancos J, García Cors M, Santiago A, Cuenca S, Guarner F, Manichanh C. 2014. Short-term effect of antibiotics on human gut microbiota. PLoS One, 9(4): e95476,  https://doi.org/10.1371/journal.pone.0095476.CrossRefGoogle Scholar
  27. Sanchez-Martinez J G, Pérez-Castañeda R, Rábago-Castro J L, Aguirre-Guzmàn G, Vàzquez-Sauceda M L. 2008. A preliminary study on the effects on growth, condition, and feeding indexes in channel catfish, Ictalurus punctatus, after the prophylactic use of potassium permanganate and oxytetracycline. Journal of the World Aquaculture Society, 39(5): 664–670,  https://doi.org/10.1111/j.1749-7345.2008.00195.x.CrossRefGoogle Scholar
  28. Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, Perez T, Rodrigo A, Schupp P J, Vacelet J, Webster N, Hentschel U, Taylor M W. 2012. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME Journal, 6(3): 564–576,  https://doi.org/10.1038/ismej.2011.116.CrossRefGoogle Scholar
  29. Schuijt T J, Lankelma J M, Scicluna B P, Melo F D S E, Roelofs J J T H, de Boer J D, Hoogendijk A J, de Beer R, de Vos A, Belzer C, de Vos W M, van de Poll T, Wiersinga W J. 2016. The gut microbiota plays a protective role in the host defence against Pneumococcal pneumonia. Gut, 65(4): 575–583,  https://doi.org/10.1136/gutjnl-2015-309728.CrossRefGoogle Scholar
  30. Sha Y J, Liu M, Wang B J, Jiang K Y, Sun G Q, Wang L. 2016. Gut bacterial diversity of farmed sea cucumbers Apostichopus japonicus with different growth rates. Microbiology, 85(1): 109–115,  https://doi.org/10.1134/S0026261716010112.CrossRefGoogle Scholar
  31. Sharifah E N, Eguchi M. 2012. Benefits of live phytoplankton, Chlorella vulgaris, as a biocontrol agent against fish pathogen Vibrio anguillarum. Fisheries Science, 78(2): 367–373,  https://doi.org/10.1007/s12562-011-0465-1.CrossRefGoogle Scholar
  32. Snieszko S F, Wood E M. 1955. The effect of some sulfonamides on the growth of brook trout, brown trout, and rainbow trout. Transactions of the American Fisheries Society, 84(1): 86–92,  https://doi.org/10.1577/1548-8659(1954)84[86:TEOSSO]2.0.CO;2.CrossRefGoogle Scholar
  33. Stiemsma L T, Turvey S E. 2017. Asthma and the microbiome: defining the critical window in early life. Allergy, Asthma & Clinical Immunology, 13: 3,  https://doi.org/10.1186/s13223-016-0173-6.CrossRefGoogle Scholar
  34. Topping D L, Clifton P M. 2001. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiological Reviews, 81(3): 1 031–1 064,  https://doi.org/10.1152/physrev.2001.81.3.1031.CrossRefGoogle Scholar
  35. Toprak E, Veres A, Michel J B, Chait R, Hartl D L, Kishony R. 2012. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nature Genetics, 44(1): 101–105,  https://doi.org/10.1038/ng.1034.CrossRefGoogle Scholar
  36. Tremaroli V, Bäckhed F. 2012. Functional interactions between the gut microbiota and host metabolism. Nature, 489(7415): 242–249,  https://doi.org/10.1038/nature11552.CrossRefGoogle Scholar
  37. Uyaguari M, Key P, Moore J, Jackson K, Scott G. 2009. Acute effects of the antibiotic oxytetracycline on the bacterial community of the grass shrimp, Palaemonetes pugio. Environmental Toxicology & Chemistry, 28(12): 2 715–2 724,  https://doi.org/10.1897/08-514.1.CrossRefGoogle Scholar
  38. Van Boeckel T P, Gandra S, Ashok A, Caudron Q, Grenfell B T, Levin S A, Laxminarayan R. 2014. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases, 14(8): 742–750,  https://doi.org/10.1016/S1473-3099(14)70780-7.CrossRefGoogle Scholar
  39. Verner-Jeffreys D W, Shields R J, Bricknell I R, Birkbeck T H. 2004. Effects of different water treatment methods and antibiotic addition on larval survival and gut microflora development in Atlantic halibut (Hippoglossus hippoglossus L.) yolk-sac larvae. Aquaculture, 232(1–4): 129–143,  https://doi.org/10.1016/S0044-8486(03)00525-8.CrossRefGoogle Scholar
  40. Vijay-Kumar M, Aitken J D, Carvalho F A, Cullender T C, Mwangi S, Srinivasan S, Sitaraman S V, Knight R, Ley R E, Gewirtz A T. 2010. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science, 328(5975): 228–231,  https://doi.org/10.1126/science.1179721.CrossRefGoogle Scholar
  41. Wang J, Huang Y J, Xu K H, Zhang X Y, Sun H Y, Fan L F, Yan M T. 2019. White spot syndrome virus (WSSV) infection impacts intestinal microbiota composition and function in Litopenaeus vannamei. Fish & Shellfish Immunology, 84: 130–137,  https://doi.org/10.1016/j.fsi.2018.09.076.CrossRefGoogle Scholar
  42. Wang L, Zhao X W, Xu H C, Bao X Y, Liu X J, Chang Y Q, Ding J. 2018. Characterization of the bacterial community in different parts of the gut of sea cucumber (Apostichopus japonicus) and its variation during gut regeneration. Aquaculture Research, 49(5): 1 987–1 996,  https://doi.org/10.1111/are.13654.CrossRefGoogle Scholar
  43. Wang P H, Chang Y Q, Yu J H, Li C Y, Xu G R. 2007. Acute peristome edema disease in juvenile and adult sea cucumbers Apostichopus japonicus (Selenka) reared in North China. Journal of Invertebrate Pathology, 96(1): 11–17,  https://doi.org/10.1016/j.jip.2007.03.001.CrossRefGoogle Scholar
  44. Yamazaki Y, Meirelles P M, Mino S, Suda W, Oshima K, Hattori M, Thompson F L, Sakai Y, Sawabe T, Sawabe T. 2016. Individual Apostichopus japonicus fecal microbiome reveals a link with polyhydroxybutyrate producers in host growth gaps. Scientific Reports, 6: 21 631,  https://doi.org/10.1038/srep21631.CrossRefGoogle Scholar
  45. Zhang D Y, Ji H F, Liu H, Wang S X, Wang J, Wang Y M. 2016a. Changes in the diversity and composition of gut microbiota of weaned piglets after oral administration of Lactobacillus or an antibiotic. Applied Microbiology and Biotechnology, 100(23): 10 081–10 093,  https://doi.org/10.1007/s00253-016-7845-5.CrossRefGoogle Scholar
  46. Zhang M L, Sun Y H, Liu Y K, Qiao F, Chen L Q, Liu W T, Du Z Y, Li E C. 2016b. Response of gut microbiota to salinity change in two euryhaline aquatic animals with reverse salinity preference. Aquaculture, 454: 72–80,  https://doi.org/10.1016/j.aquaculture.2015.12.014.CrossRefGoogle Scholar
  47. Zhang Q Q, Ying G G, Pan C G, Liu Y S, Zhao J L. 2015. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology, 49(11): 6 772–6 782,  https://doi.org/10.1021/acs.est.5b00729.CrossRefGoogle Scholar
  48. Zhang X C, Nakahara T, Murase S, Nakata H, Inoue T, Kudo T. 2013. Physiological characterization of aerobic culturable bacteria in the intestine of the sea cucumber Apostichopus japonicus. Journal of General and Applied Microbiology, 59(1): 1–10,  https://doi.org/10.2323/jgam.59.1.CrossRefGoogle Scholar
  49. Zhang Z, Xing R, Lv Z, Shao Y, Zhang W, Zhao X, Li C. 2018. Analysis of gut microbiota revealed Lactococcus garviaeae could be an indicative of skin ulceration syndrome in farmed sea cucumber Apostichopus japonicas. Fish & Shellfish Immunology, 80: 148–154,  https://doi.org/10.1016/j.fsi.2018.06.001.CrossRefGoogle Scholar
  50. Zhao Y, Liu H, Wang Q, Li B J. 2019. The influence of three antibiotics on the growth, intestinal enzyme activities, and immune response of the juvenile sea cucumber Apostichopus japonicus Selenka. Fish & Shellfish Immunology, 84: 434–440,  https://doi.org/10.1016/j.fsi.2018.10.022.CrossRefGoogle Scholar
  51. Zhou L, Limbu S M, Shen M L, Zhai W Y, Qiao F, He A Y, Du Z Y, Zhang M L. 2018. Environmental concentrations of antibiotics impair zebrafish gut health. Environmental Pollution, 235: 245–254,  https://doi.org/10.1016/j.envpol.2017.12.073.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ocean SchoolYantai UniversityYantaiChina
  2. 2.Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiChina

Personalised recommendations