Skip to main content
Log in

Wave uplift force on horizontal panels: a laboratory study

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Accurate estimation of wave uplift force is essential to the designs of reliable coastal and marine structures. We presents a series of laboratory work here on the impact of regular waves on horizontal panels, from which an empirical formula to estimate accurately the wave uplift force on panels is established. The laboratory measurements show that the wave uplift force depends mainly on the incident wave height, the wave period, the wave length, the panel width, and the clearance between the subsurface of the panel and the still water level. Among these factors, the impact of the panel width on uplift forces is relatively complicated. Result shows that the relative panel width (i.e., the ratio of panel width to wave length) plays a more important role in estimating the wave uplift force. Based on our comprehensive laboratory measurements, we further developed an empirical formula to compute wave uplift force on horizontal panels through dimensionless analysis. Compared with other empirical formulas, this formula uses dimensionless variables of clear physical meanings, thus can describe the interaction between waves and the panels in a better way. In addition, the efficiency of the formula to estimate wave uplift force on horizontal panels is verified against existing works. Therefore, the findings in this study shall be useful for understanding the mechanism of wave uplift force on horizontal panels and numerical model validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author on request.

References

  • Bea R G, Xu T, Stear J, Ramos R. 1999. Wave forces on decks of offshore platforms. Journal of Waterway, Port, Coastal, and Ocean Engineering, 125(3): 136–144.

    Article  Google Scholar 

  • Bradner C, Schumacher T, Cox D, Higgins C. 2011. Experimental setup for a large-scale bridge superstructure model subjected to waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 137(1): 3–11.

    Article  Google Scholar 

  • Broughton P, Horn E, Anastasiou K, Shih R. 1988. Ekofisk Platform 2/4C: re-analysis due to subsidence. Proceedings of the Institution of Civil Engineers, 84(3): 619–622.

    Article  Google Scholar 

  • Cuomo G, Tirindelli M, Allsop W. 2007. Wave-in-deck loads on exposed jetties. Coastal Engineering, 54(9): 657–679.

    Article  Google Scholar 

  • French J A. 1969. Wave Uplift Pressures on Horizontal Platforms. California Institute of Technology, Pasadena, CA. 415p.

    Google Scholar 

  • Hayatdavoodi M, Ertekin R C. 2016. Review of wave loads on coastal bridge decks. Applied Mechanics Reviews, 68(3): 030802.

    Article  Google Scholar 

  • Hayatdavoodi M, Seiffert B, Ertekin R C. 2015. Experiments and calculations of cnoidal wave loads on a flat plate in shallow-water. Journal of Ocean Engineering and Marine Energy, 1(1): 77–99.

    Article  Google Scholar 

  • Iemura H, Pradono M H, Takahashi Y. 2005. Report on the tsunami damage of bridges in Banda Aceh and some possible countermeasures. In: Proceedings of the 28th JSCE Earthquake Engineering Symposium. JSCE, Tokyo. p.214.

    Google Scholar 

  • Isaacson M, Bhat S. 1996. Wave forces on a horizontal plate. International Journal of Offshore and Polar Engineering, 6(1): 19–26.

    Google Scholar 

  • Jin J, Meng B. 2011. Computation of wave loads on the superstructures of coastal highway bridges. Ocean Engineering, 38(17–18): 2185–2200.

    Article  Google Scholar 

  • Murali K, Sundar V, Setti K. 2009. Wave-induced pressures and forces on deck slabs near the free surface. Journal of Waterway, Port, Coastal, and Ocean Engineering, 135(6): 269–277.

    Article  Google Scholar 

  • Park H, Tomiczek T, Cox D T, van de Lindt J W, Lomonaco P. 2017. Experimental modeling of horizontal and vertical wave forces on an elevated coastal structure. Coastal Engineering, 128: 58–74.

    Article  Google Scholar 

  • Seiffert B, Hayatdavoodi M, Ertekin R C. 2014. Experiments and computations of solitary-wave forces on a coastal-bridge deck. Part I: flat plate. Coastal Engineering, 88: 194–209.

    Article  Google Scholar 

  • Suchithra N, Koola P M. 1995. A study of wave impact of horizontal slabs. Ocean Engineering, 22(7): 687–697.

    Article  Google Scholar 

  • Tirindelli M, Cuomo G, Allsop W, McConnell K. 2004. Physical model studies of wave-induced loading on exposed jetties: towards new prediction formulae. In: Coastal Structures 2003. ASCE, Portland, Oregon, United States. p. 382–393, https://doi.org/10.1061/40733(147)32.

    Chapter  Google Scholar 

  • Wang H. 1970. Water wave pressure on horizontal plate. Journal of the Hydraulics Division, 96(10): 1997–2017.

    Google Scholar 

  • Wei Z P, Dalrymple R A. 2016. Numerical study on mitigating tsunami force on bridges by an SPH model. Journal of Ocean Engineering and Marine Energy, 2(3): 365–380.

    Article  Google Scholar 

  • Zhou Y R, Chen G P, Wang D T. 2004. Experimental study on total uplift forces on waves on horizontal plates. Journal of Hydrodynamics, 16(2): 220–226.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjun Liu.

Additional information

Supported by the National Key R&D Program of China (No. 2016YFC1402002), the National Natural Science Foundation of China (No. 51579156), and the Major Project of Nanjing Hydraulic Research Institute Funds (Nos. Y218005, Y218006)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Sun, T., Wang, D. et al. Wave uplift force on horizontal panels: a laboratory study. J. Ocean. Limnol. 37, 1899–1911 (2019). https://doi.org/10.1007/s00343-019-8292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-8292-9

Keyword

Navigation