Molecular analyses of bacterioplankton communities with highly abundant Vibrio clades: a case study in Bohai Sea coastal waters

Abstract

We investigated the bacterioplankton abundance, community composition and the associated Vibrio clades of natural seawater in Bohai Sea coastal waters. Seawater samples (10 L in triplicate) were collected at 0.5, 3, and 5 m depths near the coastal aquaculture zone of the Bohai Sea on May 12, 2016. Real-time PCR and 16S rRNA gene amplicon high-throughput sequencing methods were employed by which 485 operational taxonomic units (OTUs) at a 97% sequence similarity level were generated. Gammaproteobacteria, Alphaproteobacteria, and Bacteroidetes were the most abundant groups, accounting for 49.5%, 23.5%, and 18.9% of the total assemblage, respectively. Obvious variations in Pseudoalteromonas, Vibrio, and Octadecabacter, which were the most abundant genera, could be observed among different samples. Notably, the results of Vibrio-specific real-time PCR indicated that Vibrio had extremely high 16S rRNA gene copy numbers. The 16S rRNA gene sequencing results across all the samples also indicated that they occupied a large proportion of the total assemblage. Both the alpha diversity and major bacterioplankton group Pseudoalteromonas had significant correlations with the concentration of PO 3−4 . Overall, studies on bacterioplankton communities with highly abundant Vibrio clades can provide interesting insight into the microbial function and health assessment of the Bohai Sea coastal ecosystem.

This is a preview of subscription content, access via your institution.

References

  1. Abell G C J, Bowman J P. 2005. Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiology Ecology, 51(2): 265–277.

    Article  Google Scholar 

  2. Acinas S G, Marcelino L A, Klepac-Ceraj V, Polz M F. 2004. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. Journal of Bacteriology, 186(9): 2 629–2 635.

    Article  Google Scholar 

  3. Bowman J P. 2007. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Marine Drugs, 5(4): 220–241.

    Article  Google Scholar 

  4. Brinkhoff T, Giebel H A, Simon M. 2008. Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Archives of Microbiology, 189(6): 531–539.

    Article  Google Scholar 

  5. Campbell A M, Fleisher J, Sinigalliano C, White J R, Lopez J V. 2015. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida. Microbiology Open, 4(3): 390–408.

    Article  Google Scholar 

  6. Canfora L, Bacci G, Pinzari F, Lo Papa G, Dazzi C, Benedetti A. 2014. Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil? PLoS One, 9(9): e106662, https://doi.org/10.1371/journal.pone.0106662.

    Article  Google Scholar 

  7. Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336.

    Article  Google Scholar 

  8. Caporaso J G, Lauber C L, Walters W A, Berg-Lyons D, Huntley J, Fierer N, Owens S M, Betley J, Fraser L, Bauer M, Gormley N, Gilbert J A, Smith G, Knight R. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal, 6(8): 1 621–1 624.

    Article  Google Scholar 

  9. Cottrell M T, Kirchman D L. 2000. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Applied and Environmental Microbiology, 66(12): 5 116–5 122.

    Article  Google Scholar 

  10. Dang H Y, Zhou H X, Zhang Z N, Yu Z S, Hua E, Liu X S, Jiao N Z. 2013. Molecular detection of Candidatus Scalindua pacifica and environmental responses of sediment anammox bacterial community in the Bohai Sea, China. PLoS One, 8(4): e61330.

    Article  Google Scholar 

  11. DeLong E F, Franks D G, Alldredge A L. 1993. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnology and Oceanography, 38(5): 924–934.

    Article  Google Scholar 

  12. DeLorenzo M E, Brooker J, Chung K W, Kelly M, Martinez J, Moore J G, Thomas M. 2016. Exposure of the grass shrimp, Palaemonetes pugio, to antimicrobial compounds affects associated Vibrio bacterial density and development of antibiotic resistance. Environmental Toxicology, 31(4): 469–477.

    Article  Google Scholar 

  13. Ding J J, Zhang Y G, Deng Y, Cong J, Lu H, Sun X, Yang C Y, Yuan T, Van Nostrand J D, Li D Q, Zhou J Z, Yang Y F. 2015. Integrated metagenomics and network analysis of soil microbial community of the forest timberline. Scientific Reports, 5: 7 994.

    Article  Google Scholar 

  14. Eiler A, Johansson M, Bertilsson S. 2006. Environmental influences on Vibrio populations in northern temperate and boreal coastal waters (Baltic and Skagerrak Seas). Applied and Environmental Microbiology, 72(9): 6 004–6 011.

    Article  Google Scholar 

  15. Farmer J J, Janda J M, Brenner F W, Cameron D N, Birkhead K M. 2005. Genus I. Vibrio pacini 1854. In: Brenner D J, Kreig N R, Staley J T, eds. Bergey’s Manual of Systematic Bacteriology. 2nd edn. Springer, New York. p.494–546.

    Google Scholar 

  16. Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas S G, González J M, Pedrós-Alió C. 2013. Ecology of marine Bacteroidetes: a comparative genomics approach. The ISME Journal, 7(5): 1 026–1 037.

    Article  Google Scholar 

  17. Fukami K, Simidu U, Taga N. 1985. Microbial decomposition of phyto-and zooplankton in seawater. I. Changes in organic matter. Marine Ecology Progress Series, 21: 1–5.

    Article  Google Scholar 

  18. Gao X L, Zhou F X, Chen C T A. 2014. Pollution status of the Bohai Sea: an overview of the environmental quality assessment related trace metals. Environment International, 62: 12–30.

    Article  Google Scholar 

  19. Ghosh A, Bhadury P. 2018. Exploring biogeographic patterns of bacterioplankton communities across global estuaries. MicrobiologyOpen, e741, https://doi.org/10.1002/mbo3.741.

  20. Gifford S M, Sharma S, Moran M A. 2014. Linking activity and function to ecosystem dynamics in a coastal bacterioplankton community. Frontiers in Microbiology, 5: 185.

    Article  Google Scholar 

  21. Gilbert J A, Steele J A, Caporaso J G, Steinbrück L, Reeder J, Temperton B, Huse S, McHardy A C, Knight R, Joint I, Somerfield P, Fuhrman J A, Field D. 2012. Defining seasonal marine microbial community dynamics. The ISME Journal, 6(2): 298–308.

    Article  Google Scholar 

  22. Goodwin K D, Thompson L R, Duarte B, Kahlke T, Thompson A R, Marques J C, Caçador I. 2017. DNA sequencing as a tool to monitor marine ecological status. Frontiers in Marine Science, 4: 107.

    Article  Google Scholar 

  23. Gosink J J, Herwig R P, Staley J T. 1997. Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus, sp. nov., nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Systematic and Applied Microbiology, 20(3): 356–365.

    Article  Google Scholar 

  24. Grimes D J, Johnson C N, Dillon K S, Flowers A R, Noriea III N F, Berutti T. 2009. What genomic sequence information has revealed about Vibrio ecology in the ocean—a review. Microbial Ecology, 58(3): 447–460.

    Article  Google Scholar 

  25. Grimes D J, Singleton F L, Colwell R R. 1984. Allogenic succession of marine bacterial communities in response to pharmaceutical waste. Journal of Applied Microbiology, 57(2): 247–261.

    Google Scholar 

  26. Hoffmann M, Fischer M, Ottesen A, McCarthy P J, Lopez J V, Brown E W, Monday S R. 2010. Population dynamics of Vibrio spp. associated with marine sponge microcosms. The ISME Journal, 4(12): 1 608–1 612.

    Article  Google Scholar 

  27. Lin X P, Xie S P, Chen X P, Xu L L. 2006. A well-mixed warm water column in the central Bohai Sea in summer: effects of tidal and surface wave mixing. Journal of Geophysical Research: Oceans, 111(C11): C11017, https://doi.org/10.1029/2006JC003504.

    Article  Google Scholar 

  28. Lydon K A, Glinski D A, Westrich J R, Henderson W M, Lipp E K. 2017. Effects of triclosan on bacterial community composition and Vibrio populations in natural seawater microcosms. Elementa: Science of the Anthropocene, 5: 22.

    Google Scholar 

  29. McArthur J V. 2006. Microbial Ecology: An Evolutionary Approach. Elsevier, Amsterdam. 432p.

    Google Scholar 

  30. Oberbeckmann S, Wichels A, Maier T, Kostrzewa M, Raffelberg S, Gerdts G. 2011. A polyphasic approach for the differentiation of environmental Vibrio isolates from temperate waters. FEMS Microbiology Ecology, 75(1): 145–162.

    Article  Google Scholar 

  31. Paillard C, Le Roux F, Borrego J J. 2004. Bacterial disease in marine bivalves, a review of recent studies: trends and evolution. Aquatic Living Resources, 17(4): 477–498.

    Article  Google Scholar 

  32. Peng Z Q, Zhuang Z X, Huang R F, Lu Z Q. 2010. Distribution of pathogen in the Bohai sea in spring and summer. African Journal of Microbiology Research, 4(13): 1 383–1 390.

    Google Scholar 

  33. Pruzzo C, Gallo G, Canesi L. 2005. Persistence of vibrios in marine bivalves: the role of interactions with haemolymph components. Environmental Microbiology, 7(6): 761–772.

    Article  Google Scholar 

  34. Rotini A, Manfra L, Spanu F, Pisapia M, Cicero A M, Migliore L. 2017. Ecotoxicological method with marine bacteria Vibrio anguillarum to evaluate the acute toxicity of environmental contaminants. Journal of Visualized Experiments, (123): e55211.

  35. Shendure J, Ji H. 2008. Next-generation DNA sequencing. Nature Biotechnology, 26(10): 1 135–1 145.

    Article  Google Scholar 

  36. Sinkko H, Lukkari K, Jama A S, Sihvonen L M, Sivonen K, Leivuori M, Rantanen M, Paulin L, Lyra C. 2011. Phosphorus chemistry and bacterial community composition interact in brackish sediments receiving agricultural discharges. PLoS One, 6(6): e21555, https://doi.org/10.1371/journal.pone.0021555.

    Article  Google Scholar 

  37. Stackebrandt E, Goebel B M. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology, 44(4): 846–849.

    Article  Google Scholar 

  38. Stackebrandt E, Goodfellow M. 1991. Nucleic acid Techniques in Bacterial Systematics. Wiley, New York. 329p.

    Google Scholar 

  39. Sun Y H, De Vos P, Heylen K. 2016. Nitrous oxide emission by the non-denitrifying, nitrate ammonifier Bacillus licheniformis. BMC Genomics, 17: 68.

    Article  Google Scholar 

  40. Takemura A F, Chien D M, Polz M F. 2014. Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Frontiers in Microbiology, 5: 38.

    Article  Google Scholar 

  41. Thompson J R, Polz M F. 2006. Dynamics of Vibrio populations and their role in environmental nutrient cycling. In: Thompson F L, Austin B, Swings J eds. The Biology of Vibrios. ASM Press, Washington, DC. p.190–203.

    Google Scholar 

  42. Thompson J R, Randa M A, Marcelino L A, Tomita-Mitchell A, Lim E, Polz M F. 2004. Diversity and dynamics of a North Atlantic coastal Vibrio community. Applied and Environmental Microbiology, 70(7): 4 103–4 110.

    Article  Google Scholar 

  43. Vezzulli L, Grande C, Reid P C, Hélaouët P, Edwards M, Höfle M G, Brettar I, Colwell R R, Pruzzo C. 2016. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proceedings of the National Academy of Sciences of the United States of America, 113(34): E5 062–E5 071.

    Article  Google Scholar 

  44. Vollmers J, Voget S, Dietrich S, Gollnow K, Smits M, Meyer K, Brinkhoff T, Simon M, Daniel R. 2013. Poles apart: Arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of Xanthorhodopsin. PLoS One, 8(5): e63422, https://doi.org/10.1371/journal.pone.0063422.

    Article  Google Scholar 

  45. Wear E K, Wilbanks E G, Nelson C E, Carlson C A. 2018. Primer selection impacts specific population abundances but not community dynamics in a monthly time-series 16S rRNA gene amplicon analysis of coastal marine bacterioplankton. Environmental Microbiology, 20(8): 2 709–2 726.

    Article  Google Scholar 

  46. Westrich J R, Ebling A M, Landing W M, Joyner J L, Kemp K M, Griffin D W, Lipp E K. 2016. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters. Proceedings of the National Academy of Sciences of the United States of America, 113(21): 5 964–5 969.

    Article  Google Scholar 

  47. Westrich J R, Griffin D W, Westphal D L, Lipp E K. 2018. Vibrio population dynamics in Mid-Atlantic surface waters during Saharan dust events. Frontiers in Marine Science, 5: 12, https://doi.org/10.3389/fmars.2018.00012.

    Article  Google Scholar 

  48. Williams T J, Wilkins D, Long E, Evans F, DeMaere M Z, Raftery M J, Cavicchioli R. 2013. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environmental Microbiology, 15(5): 1 302–1 317.

    Article  Google Scholar 

  49. Worden A Z, Seidel M, Smriga S, Wick A, Malfatti F, Bartlett D, Azam F. 2006. Trophic regulation of Vibrio cholerae in coastal marine waters. Environmental Microbiology, 8(1): 21–29.

    Article  Google Scholar 

  50. Wu Z X, Yu Z M, Song X X, Yuan Y Q, Cao X H, Liang Y B. 2013. Application of an integrated methodology for eutrophication assessment: a case study in the Bohai Sea. Chinese Journal of Oceanology and Limnology, 31(5): 1 064–1 078.

    Article  Google Scholar 

  51. Yang C Y, Li Y, Zhou B, Zhou Y Y, Zheng W, Tian Y, Van Nostrand J D, Wu L Y, He Z L, Zhou J Z, Zheng T L. 2015. Illumina sequencing-based analysis of free-living bacterial community dynamics during an Akashiwo sanguine bloom in Xiamen sea, China. Scientific Reports, 5: 8476.

    Article  Google Scholar 

  52. Yilmaz P, Parfrey L W, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner F O. 2014. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Research, 42(D1): D643–D648.

    Article  Google Scholar 

  53. Yu S X, Pang Y L, Wang Y C, Li J L, Qin S. 2018. Distribution of bacterial communities along the spatial and environmental gradients from Bohai Sea to northern Yellow Sea. PeerJ, 6: e4272, https://doi.org/10.7717/peerj.4272.

    Article  Google Scholar 

  54. Zhang X H, Lin H Y, Wang X L, Austin B. 2018. Significance of Vibrio species in the marine organic carbon cycle—a review. Science China Earth Sciences, 61(10): 1 357–1 368.

    Article  Google Scholar 

  55. Zhang Y Q, Lin X, Shi X G, Lin L X, Luo H, Li L, Lin S J. 2019. Metatranscriptomic signatures associated with phytoplankton regime shift from diatom dominance to a dinoflagellate bloom. Frontiers in Microbiology, 10: 590.

    Article  Google Scholar 

  56. Zhao H P, Tao J H, Li Q X, Yuan D K, Gao Q C. 2013. Microbial ecological characteristics in the Red Tide-Monitoring area of Bohai Bay. Journal of Hydroenvironment Research, 7(2): 141–151.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yuan Zhang or Meng Li.

Additional information

6 Data Availability Statement

Upon reasonable request, the data that support this study are available from the corresponding author. The assembled tag data for all 16S rRNA gene libraries were deposited in the NCBI database with accession Nos. SRS2686949, SRS2686950, SRS2686951, SRS2686952, SRS2686953, SRS2684038, SRS2684401, SRS2684423, SRS2684422, and SRS2686948.

Supported by the Free Exploration Subject of State Key Laboratory of Environmental Criteria and Risk Assessment, CRAES (No. 2005001002)

Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhang, Y., He, J. et al. Molecular analyses of bacterioplankton communities with highly abundant Vibrio clades: a case study in Bohai Sea coastal waters. J. Ocean. Limnol. 37, 1638–1648 (2019). https://doi.org/10.1007/s00343-019-8210-1

Download citation

Keyword

  • Bohai Sea
  • bacterioplankton
  • Vibrio
  • 16S rRNA
  • Illumina MiSeq