Molecular analyses of bacterioplankton communities with highly abundant Vibrio clades: a case study in Bohai Sea coastal waters

  • Shuping Wang
  • Yuan ZhangEmail author
  • Jia He
  • Xiaobo Jia
  • Jianing Lin
  • Meng LiEmail author
  • Qinglin Wang


We investigated the bacterioplankton abundance, community composition and the associated Vibrio clades of natural seawater in Bohai Sea coastal waters. Seawater samples (10 L in triplicate) were collected at 0.5, 3, and 5 m depths near the coastal aquaculture zone of the Bohai Sea on May 12, 2016. Real-time PCR and 16S rRNA gene amplicon high-throughput sequencing methods were employed by which 485 operational taxonomic units (OTUs) at a 97% sequence similarity level were generated. Gammaproteobacteria, Alphaproteobacteria, and Bacteroidetes were the most abundant groups, accounting for49.5%, 23.5%, and 18.9% of the total assemblage, respectively. Obvious variations in Pseudoalteromonas, Vibrio, and Octadecabacter, which were the most abundant genera, could be observed among different samples. Notably, the results of Vibrio-specific real-time PCR indicated that Vibrio had extremely high 16S rRNA gene copy numbers. The 16S rRNA gene sequencing results across all the samples also indicated that they occupied a large proportion of the total assemblage. Both the alpha diversity and major bacterioplankton group Pseudoalteromonas had significant correlations with the concentration of \(\rm{PO}_4^{3-}\). Overall, studies on bacterioplankton communities with highly abundant Vibrio clades can provide interesting insight into the microbial function and health assessment of the Bohai Sea coastal ecosystem.


Bohai Sea bacterioplankton Vibrio 16S rRNA Illumina MiSeq 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

343_2019_8210_MOESM1_ESM.pdf (382 kb)
Supplementary Material


  1. Abell G C J, Bowman J P. 2005. Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiology Ecology, 51(2): 265–277.CrossRefGoogle Scholar
  2. Acinas S G, Marcelino L A, Klepac-Ceraj V, Polz M F. 2004. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. Journal of Bacteriology, 186(9): 2629–2635.CrossRefGoogle Scholar
  3. Bowman J P. 2007. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Marine Drugs, 5(4): 220–241.CrossRefGoogle Scholar
  4. Brinkhoff T, Giebel H A, Simon M. 2008. Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Archives of Microbiology, 189(6): 531–539.CrossRefGoogle Scholar
  5. Campbell A M, Fleisher J, Sinigalliano C, White J R, Lopez J V. 2015. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast Florida. Microbiology Open, 4(3): 390–408.CrossRefGoogle Scholar
  6. Canfora L, Bacci G, Pinzari F, Lo Papa G, Dazzi C, Benedetti A. 2014. Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil? PLoS One, 9(9): el06662,
  7. Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Pena A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336.CrossRefGoogle Scholar
  8. Caporaso J G, Lauber C L, Walters W A, Berg-Lyons D, Huntley J, Fierer N, Owens S M, Betley J, Fraser L, Bauer M, Gormley N, Gilbert J A, Smith G, Knight R. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal, 6(8): 1621–1624.CrossRefGoogle Scholar
  9. Cottrell M T, Kirchman D L. 2000. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Applied and Environmental Microbiology, 66(12): 5116–5122.CrossRefGoogle Scholar
  10. Dang H Y, Zhou H X, Zhang Z N, Yu Z S, Hua E, Liu X S, Jiao N Z. 2013. Molecular detection of Candidatus Scalindua pacifica and environmental responses of sediment anammox bacterial community in the Bohai Sea, China. PLoS One, 8(4): e61330.CrossRefGoogle Scholar
  11. DeLong E F, Franks D G, Alldredge A L. 1993. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnology and Oceanography, 38(5): 924–934.CrossRefGoogle Scholar
  12. DeLorenzo M E, Brooker J, Chung K W, Kelly M, Martinez J, Moore J G, Thomas M. 2016. Exposure of the grass shrimp, Palaemonetes pugio, to antimicrobial compounds affects associated Vibrio bacterial density and development of antibiotic resistance. Environmental Toxicology, 31(4): 469–477.CrossRefGoogle Scholar
  13. Ding J J, Zhang Y G, Deng Y, Cong J, Lu H, Sun X, Yang C Y, Yuan T, Van Nostrand J D, Li D Q, Zhou J Z, Yang Y F. 2015. Integrated metagenomics and network analysis of soil microbial community of the forest timberline. Scientific Reports, 5: 7 994.Google Scholar
  14. Eiler A, Johansson M, Bertilsson S. 2006. Environmental influences on Vibrio populations in northern temperate and boreal coastal waters (Baltic and Skagerrak Seas). Applied and Environmental Microbiology, 72(9): 6004–6011.CrossRefGoogle Scholar
  15. Farmer J J, Janda J M, Brenner F W, Cameron D N, Birkhead K M. 2005. Genus I. Vibrio pacini 1854. In: Brenner D J, Kreig N R, Staley J T, eds. Bergey's Manual of Systematic Bacteriology. 2nd edn. Springer, New York. p.494–546.Google Scholar
  16. Fernandez-Gomez B, Richter M, Schiller M, Pinhassi J, Acinas S G, Gonzalez J M, Pedros-Alio C. 2013. Ecology of marine Bacteroidetes: a comparative genomics approach. The ISME Journal, 7(5): 1026–1037.CrossRefGoogle Scholar
  17. Fukami K, Simidu U, Taga N. 1985. Microbial decomposition of phyto-and zooplankton in seawater. I. Changes in organic matter. Marine Ecology Progress Series, 21: 1–5.CrossRefGoogle Scholar
  18. Gao X L, Zhou F X, Chen C T A. 2014. Pollution status of the Bohai Sea: an overview of the environmental quality assessment related trace metals. Environment International, 62: 12–30.CrossRefGoogle Scholar
  19. Ghosh A, Bhadury P. 2018. Exploring biogeographic patterns of bacterioplankton communities across global estuaries. MicrobiologyOpen, e741, Scholar
  20. Gifford S M, Sharma S, Moran M A. 2014. Linking activity and function to ecosystem dynamics in a coastal bacterioplankton community. Frontiers in Microbiology, 5: 185.CrossRefGoogle Scholar
  21. Gilbert J A, Steele J A, Caporaso J G, Steinbriick L, Reeder J, Temperton B, Huse S, McHardy A C, Knight R, Joint I, Somerfield P, Fuhrman J A, Field D. 2012. Defining seasonal marine microbial community dynamics. The ISME Journal, 6(2): 298–308.CrossRefGoogle Scholar
  22. Goodwin K D, Thompson L R, Duarte B, Kahlke T, Thompson A R, Marques J C, Cacador I. 2017. DNA sequencing as a tool to monitor marine ecological status. Frontiers in Marine Science, 4: 107.CrossRefGoogle Scholar
  23. Gosink J J, Herwig R P, Staley J T. 1997. Octadecabacter arcticus gen. nov, sp. nov., and O. antarcticus, sp. nov., nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Systematic and Applied Microbiology, 20(3): 356–365.CrossRefGoogle Scholar
  24. Grimes D J, Johnson C N, Dillon K S, Flowers A R, Noriea III N F, Berutti T. 2009. What genomic sequence information has revealed about Vibrio ecology in the ocean-a review. Microbial Ecology, 58(3): 447–460.CrossRefGoogle Scholar
  25. Grimes D J, Singleton F L, Colwell R R. 1984. Allogenic succession of marine bacterial communities in response to pharmaceutical waste. Journal of Applied Microbiology, 57(2): 247–261.Google Scholar
  26. Hoffmann M, Fischer M, Ottesen A, McCarthy P J, Lopez J V, Brown E W, Monday S R. 2010. Population dynamics of Vibrio spp. associated with marine sponge microcosms. The ISME Journal, 4(12): 1608–1612.CrossRefGoogle Scholar
  27. Lin X P, Xie S P, Chen X P, Xu L L. 2006. A well-mixed warm water column in the central Bohai Sea in summer: effects of tidal and surface wave mixing. Journal of Geophysical Research: Oceans, 111(C11): C11017,
  28. Lydon K A, Glinski D A, Westrich J R, Henderson W M, Lipp E K. 2017. Effects of triclosan on bacterial community composition and Vibrio populations in natural seawater microcosms. Elementa: Science of the Anthropocene, 5: 22.Google Scholar
  29. McArthur J V 2006. Mcrobial Ecology: An Evolutionary Approach. Elsevier, Amsterdam. 432p.Google Scholar
  30. Oberbeckmann S, Wichels A, Maier T, Kostrzewa M, Raffelberg S, Gerdts G. 2011. A polyphasic approach for the differentiation of environmental Vibrio isolates from temperate waters. FEMS Microbiology Ecology, 75(1): 145–162.CrossRefGoogle Scholar
  31. Paillard C, Le Roux F, Borrego J J. 2004. Bacterial disease in marine bivalves, a review of recent studies: trends and evolution. Aquatic Living Resources, 17(4): 477–498.CrossRefGoogle Scholar
  32. Peng Z Q, Zhuang Z X, Huang R F, Lu Z Q. 2010. Distribution of pathogen in the Bohai sea in spring and summer. African Journal of Microbiology Research, 4(13): 1383–1390.Google Scholar
  33. Pruzzo C, Gallo G, Canesi L. 2005. Persistence of vibrios in marine bivalves: the role of interactions with haemolymph components. Environmental Microbiology, 7(6): 761–772.CrossRefGoogle Scholar
  34. Rotini A, Manfra L, Spanu F, Pisapia M, Cicero A M, Migliore L. 2017. Ecotoxicological method with marine bacteria Vibrio anguillarum to evaluate the acute toxicity of environmental contaminants. Journal of Visualized Experiments, (123): e55211.Google Scholar
  35. Shendure J, Ji H. 2008. Next-generation DNA sequencing. Nature Biotechnology, 26(10): 1135–1145.CrossRefGoogle Scholar
  36. Sinkko H, Lukkari K, Jama A S, Sihvonen L M, Sivonen K, Leivuori M, Rantanen M, Paulin L, Lyra C. 2011. Phosphorus chemistry and bacterial community composition interact in brackish sediments receiving agricultural discharges. PLoS One, 6(6): e21555, Scholar
  37. Stackebrandt E, Goebel B M. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology, 44(4): 846–849.CrossRefGoogle Scholar
  38. Stackebrandt E, Goodfellow M. 1991. Nucleic acid Techniques in Bacterial Systematics. Wiley, New York. 329p.Google Scholar
  39. Sun Y H, De Vos P, Heylen K. 2016. Nitrous oxide emission by the non-denitrifying, nitrate ammonifier Bacillus licheniformis. BMC Genomics, 17: 68.CrossRefGoogle Scholar
  40. Takemura A F, Chien D M, Polz M F. 2014. Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Frontiers in Microbiology, 5: 38.CrossRefGoogle Scholar
  41. Thompson JR, Polz MF. 2006. Dynamics of Vibrio populations and their role in environmental nutrient cycling. In: Thompson F L, Austin B, Swings J eds. The Biology of Vibrios. ASM Press, Washington, DC. p.190–203.CrossRefGoogle Scholar
  42. Thompson J R, Randa M A, Marcelino L A, Tomita-Mitchell A, Lim E, Polz M F. 2004. Diversity and dynamics of a North Atlantic coastal Vibrio community. Applied and Environmental Microbiology, 70(7): 4103–4110.CrossRefGoogle Scholar
  43. Vezzulli L, Grande C, Reid P C, Hélaouët P, Edwards M, Höfle M G, Brettar I, Colwell R R, Pruzzo C. 2016. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proceedings of the National Academy of Sciences of the United States of America, 113(34): E5062–E5071.CrossRefGoogle Scholar
  44. Vollmers J, Voget S, Dietrich S, Gollnow K, Smits M, Meyer K, Brmkhoff T, Simon M, Daniel R. 2013. Poles apart: Arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of Xanthorhodopsin. PLoS One, 8(5): e63422, Scholar
  45. Wear E K, Wilbanks E G, Nelson C E, Carlson C A. 2018. Primer selection impacts specific population abundances but not community dynamics in a monthly time-series 16S rRNA gene amplicon analysis of coastal marine bacterioplankton. Environmental Microbiology, 20(8): 2709–2726.CrossRefGoogle Scholar
  46. Westrich J R, Ebling A M, Landing W M, Joyner J L, Kemp K M, Griffin D W, Lipp E K. 2016. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters. Proceedings of the National Academy of Sciences of the United States of America, 113(21): 5964–5969.CrossRefGoogle Scholar
  47. Westrich J R, Griffin D W, Westphal D L, Lipp E K. 2018. Vibrio population dynamics in Md-Atlantic surface waters during Saharan dust events. Frontiers in Marine Science, 5: 12, Scholar
  48. Williams T J, Wilkins D, Long E, Evans F, DeMaere M Z, Raftery M J, Cavicchioli R. 2013. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environmental Microbiology, 15(5): 1302–1317.CrossRefGoogle Scholar
  49. Worden A Z, Seidel M, Smriga S, Wick A, Malfatti F, Bartlett D, Azam F. 2006. Trophic regulation of Vibrio cholerae in coastal marine waters. Environmental Microbiology, 8(1): 21–29.CrossRefGoogle Scholar
  50. Wu Z X, Yu Z M, Song X X, Yuan Y Q, Cao X H, Liang Y B. 2013. Application of an integrated methodology for eutrophication assessment: a case study in the Bohai Sea. Chinese Journal of Oceanology and Limnology, 31(5): 1064–1078.CrossRefGoogle Scholar
  51. Yang C Y, Li Y, Zhou B, Zhou Y Y, Zheng W, Tian Y, Van Nostrand J D, Wu L Y, He Z L, Zhou J Z, Zheng T L. 2015. Illumina sequencing-based analysis of free-living bacterial community dynamics during an Akashiwo sanguine bloom in Xiamen sea, China. Scientific Reports, 5: 8476.CrossRefGoogle Scholar
  52. Yilmaz P, Parfrey L W, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glockner F O. 2014. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Research, 42(D1): D643–D648.CrossRefGoogle Scholar
  53. Yu S X, Pang YL, Wang YC, Li JL, Qin S. 2018. Distribution of bacterial communities along the spatial and environmental gradients from Bohai Sea to northern Yellow Sea. PeerJ], 6: e4272, Scholar
  54. Zhang X H, Lin H Y, Wang X L, Austin B. 2018. Significance of Vibrio species in the marine organic carbon cycle-a review. Science China Earth Sciences, 61(10): 1357–1368.CrossRefGoogle Scholar
  55. Zhang Y Q, Lin X, Shi X G, Lin L X, Luo H, Li L, Lin S J. 2019. Metatranscriptomic signatures associated with phytoplankton regime shift from diatom dominance to a dinoflagellate bloom. Frontiers in Microbiology, 10:590.CrossRefGoogle Scholar
  56. Zhao H P, Tao J H, Li Q X, Yuan D K, Gao Q C. 2013. Microbial ecological characteristics in the Red Tide-Monitoring area of Bohai Bay. Journal of Hydro-environment Research, 7(2): 141–151.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Environmental Criteria and Risk AssessmentChinese Research Academy of Environmental SciencesBeijingChina
  2. 2.Institute for Advanced StudyShenzhen UniversityShenzhenChina
  3. 3.College of Animal Science and TechnologyHebei Normal University of Science and TechnologyQinhuangdaoChina

Personalised recommendations