Advertisement

Intraspecific morphometric diversity of barramundi ( Lates calcarifer Bloch, 1790) in the waters of southern Bangladesh

  • Md Reaz ChakladerEmail author
  • Ashfaqun Nahar
  • Md Abu Hanif
  • Muhammad A.B. Siddik
Article
  • 10 Downloads

Abstract

A total of 160 barramundi’s ( Lates calcarifer Bloch, 1790) sampled from four rivers (Tentulia, Balaswar, Bakkhali, and Andarmanik) along the southern coastal region of Bangladesh were investigated in terms of morphometric characters to reveal the intraspecific variation. Twenty-five morphometric measurements were extracted using the conventional method and subjected to multivariate analyses (i.e., principal component analysis (PCA), discriminate function analysis (DFA), cluster analysis (CA)) to distinguish individuals from diff erent rivers. The result demonstrated that twenty-two out of 25 measurements was statistically significant (Univariate ANOVA) among all four populations. PCA analysis of morphometric characters resulted in two principal components, PC I and PCII which accounted for 79.25% and 4.28% of the total data variance. PC I-PC II plot explained 83.53% of total variance diff erentiated the population of L. calcarifer into two groups. Discriminate analysis correctly classified about 88.1% of the examined fish into the four areas. The UPGMA dendrogram showed that Bakkhali populations were the most morphologically diff erent populations in comparison to other populations, while Andarmanik and Balaswar populations were very close to each other. The strong morphometric variation between Bakkhali and Tentulia, Andarmanik and Balaswar was observed in the present study, suggested the evidence of the separate stock population of barramundi in these locations, which might require distinct stock management strategies for resource sustainability in the waters of southern Bangladesh. However, if these findings are supported by further molecular markers and geometric morphometry, this would be a strong indication of diff erent stocks of this population in the four rivers of southern Bangladesh.

Keyword

intraspecific diversity morphometric characters stock structure Lates calcarifer Bangladesh 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbarzadeh A, Farahmand H, Shabani A A, Karami M, Kaboli M, Abbasi K, Rafiee G R. 2009. Morphological variation of the pikeperch Sander lucioperca(L.) in the southern Caspian Sea, using a truss system. Journal of Applied Ichthyology, 25(5): 576–582.CrossRefGoogle Scholar
  2. Almeida P R, Tomaz G, Andrade N O, Quintella B R. 2008. Morphological analysis of geographic variation of sea lamprey ammocoetes in Portuguese river basins. In: Dufour S, Prévost E, Rochard E, Williot P eds. Fish and Diadromy in Europe(Ecology, Management, Conservation). Springer, Dordrecht. 200: 47–59.Google Scholar
  3. AnvariFar H, Khyabani A, Farahmand, H, Vatandoust S, AnvariFar H, Jahageerdar S. 2011. Detection of morphometric diff erentiation between isolated up–and downstream populations of Siah Mahi( Capoeta capoeta gracilis )(Pisces: Cyprinidae) in the Tajan River(Iran). Hydrobiologia, 673(1): 41–52.CrossRefGoogle Scholar
  4. Begg G A, Friedland K D, Pearce J B. 1999. Stock identification and its role in stock assessment and fisheries management: an overview. Fisheries Research, 43(1–3): 1–8.CrossRefGoogle Scholar
  5. Boussou C K, Konan F K, Edia O E, Ouattara M, Bony Y K, Ouattara A, Gourene G. 2010. Morphometric analysis of populations of Chromidotilapia guntheri(Sauvage, 1882)(Cichlidae, perciformes) in four coastal rivers of Côte d’Ivoire(West Africa). Pan–American Journal of Aquatic Sciences, 5: 387–400.Google Scholar
  6. Chaklader M R, Siddik M A B, Hanif M A, Nahar A, Islam M A. 2018. Length–weight relationships of Acanthopagrus longispinnis(Valenciennes, 1830), Raconda russeliana(Gray, 1831) and Coilia neglecta(Whitehead, 1967) from the Bay of Bengal coast, Bangladesh. Journal of Applied Ichthyology, 34(4): 1 091–1 093, https://doi.org/10.1111/jai.13728.CrossRefGoogle Scholar
  7. Chaklader M R, Siddik M A B, Hanif M A, Nahar A, Mahmud S, Piria M. 2016a. Morphometric and meristic variation of endangered pabda catfish, Ompok pabda(Hamilton–Buchanan, 1822) from southern coastal waters of Bangladesh. Pakistan Journal of Zoology, 48(3): 681–687.Google Scholar
  8. Chaklader M R, Siddik M A B, Hanif M A, Nahar A. 2016b. Size structure of finescale razorbelly minnow, Salmostoma phulo(Cyprinidae) inhabiting a coastal river of Bangladesh. Iranian Journal of Fisheries Sciences, 15(4): 1 348–1 361.Google Scholar
  9. Chaklader M R, Siddik M A B, Nahar A. 2015. Taxonomic diversity of paradise threadfin Polynemus paradiseus(Linnaeus, 1758) inhabiting southern coastal rivers in Bangladesh. Sains Malaysiana, 44(9): 1 241–1 248.CrossRefGoogle Scholar
  10. Chenoweth S F, Hughes J M, Keenan C P, Lavery S. 1998. Concordance between dispersal and mitochondrial gene flow: isolation by distance in a tropical teleost, Lates calcarifer(Australian barramundi). Heredity, 80(2): 187–197.CrossRefGoogle Scholar
  11. Dasgupta S, Kamal F A, Khan Z H, Choudhury S, Nishat A. 2014. River Salinity and Climate Change: Evidence from Coastal Bangladesh. Policy Research working paper; no. WPS 6817. Washington, DC: World Bank Group. http://documents.worldbank.org/curated/en/522091468209055387/River–salinity–and–climate–change–evidence–from–coastal–Bangladesh.CrossRefGoogle Scholar
  12. Doup R G, Horwitz P, Lymbery A J. 1999. Mitochondrial genealogy of Western Australian barramundi: applications of inbreeding coefficients and coalescent analysis for separating temporal population processes. Journal of Fish Biology, 54(6): 1 197–1 209.CrossRefGoogle Scholar
  13. Elliott N G, Haskard K, Koslo J A. 1995. Morphometric analysis of orange roughy( Hoplostethus atlanticus ) off the continental slope of Southern Australia. Journal of Fish Biology, 46(2): 202–220.CrossRefGoogle Scholar
  14. Field A. 2000. Discovering Statistics using SPSS for Windows. Sage, London.Google Scholar
  15. Graham, J J. 1982. Production of larval herring, Clupea harengus, along the Maine coast, 1964–1978. Journal of Northwest Atlantic Fisher y Science, 3: 63–85.CrossRefGoogle Scholar
  16. Hanif M A, Siddik M A B, Chaklader M R, Pham H D, Kleindienst R. 2017a. Length–weight relationships of three catfish species from a tributary of the Dhaleshwari River, Bangladesh. Journal of Applied Ichthyology, 33(6): 1 261–1 262, https://doi.org/10.1111/jai.13448.CrossRefGoogle Scholar
  17. Hanif M A, Siddik M A B, Chaklader M R. 2015. Fish diversity in the southern coastal waters of Bangladesh: present status, threats and conservation perspectives. Croatian Journal of Fisheries, 73: 251–274.CrossRefGoogle Scholar
  18. Hanif M A, Siddik M A B, Nahar A, Chaklader M R, Fotedar R. 2017b. A new distribution of the Buff on’s river garfish, Zenarchopterus buff onis(Valenciennes, 1847) in the southern coastal rivers of Bangladesh. Journal of Applied Ichthyology, 33(6): 1 211–1 214, https://doi.org/10.1111/jai.13462.CrossRefGoogle Scholar
  19. Holčík J. 1986. The Freshwater Fishes of Europe. Vol 1: Part I, Petromyzontidae. AULA–Verlag, Wiesbaden. p.117–140.Google Scholar
  20. Hourston A S. 1982. Homing by Canada’s west coast herring to management units and divisions as indicated by tag recoveries. Canadian Journal of Fisheries and Aquatic Sciences, 39(10): 1 414–1 422.CrossRefGoogle Scholar
  21. Iles T D, Sinclair M. 1982. Atlantic herring: stock discreteness and abundance. Science, 215(4533): 627–633.CrossRefGoogle Scholar
  22. Karakousis Y, Triantaphyllidis C, Economidis P S. 1991. Morphological variability among seven populations of brown trout, Salmo trutta L., in Greece. Journal of Fish Biology, 38(6): 807–817.CrossRefGoogle Scholar
  23. Keenan C P. 1994. Recent evolution of population structure in Australian barramundi, Lates calcarifer(Bloch): an example of isolation by distance in one dimension. Australian Journal of Marine and Freshwater Research, 45(7): 1 123–1 148.CrossRefGoogle Scholar
  24. Konan K M, Adépo–Gourène A B, Ouattara A, Nyingy W D, Gourene G. 2010. Morphometric variation among male populations of freshwater shrimp Macrobrachium vollenhovenii Herklots, 1851 from Côte d’Ivoire Rivers. Fisheries Research, 103(1–3): 1–8.CrossRefGoogle Scholar
  25. Kungvankij P, Tiro J R Jr, Pudadera B J Jr, Potestas I O. 1986. Biology and Culture of Sea Bass( Lates calcarifer ). Network of Aquaculture Centres in Asia, Bangkok, Thailand. 70p.Google Scholar
  26. Luna S. 2008. Lates calcarifer, Barramundi: fisheries, aquaculture, gamefish, aquarium. FishBase. http://fishbase.sinica.edu.tw/summary/speciessummary.php? genusname=Lates&speciesname=calcarifer. Accessed on April 2, 2008.Google Scholar
  27. Mir J I, Sarkar U K, Dwivedi A K, Gusain O P, Jena J K. 2013. Stock structure analysis of Labeo rohita(Hamilton, 1822) across the Ganga basin(India) using a truss network system. Journal of Applied Ichthyology, 29(5): 1 097–1 103.CrossRefGoogle Scholar
  28. Miyan K, Khan M A, Patel D K, Khan S, Ansari N G. 2016. Truss morphometry and otolith microchemistry reveal stock discrimination in Clarias batrachus(Linnaeus, 1758) inhabiting the Gangetic river system. Fisheries Research, 173: 294–302.CrossRefGoogle Scholar
  29. Mousavi–Sabet H, Anvarifar H. 2013. Landmark–based morphometric variation between Cobitis keyvani and Cobitis faridpaki(Pisces: Cobitidae), with new habitat for C. faridpaki in the southern Caspian Sea basin. Folia Zoology, 62(3): 167–175.CrossRefGoogle Scholar
  30. Murta A G. 2000. Morphological variation of horse mackerel( Trachurus trachurus ) in the Iberian and North African Atlantic: implications for stock identification. ICES Journal of Marine Science, 57(4): 1 240–1 248.CrossRefGoogle Scholar
  31. Nahar A, Chaklader M R, Siddi M A B, Ilham I, Pham H D, Munilkumar S. 2017. Stock structure of the critically endangered Clupisoma garua(Hamilton, 1822): an investigation based on discriminant analysis approach. Journal of Aquaculture Research and Development, 8(2): 1000470.CrossRefGoogle Scholar
  32. Nahar A, Hanif M A, Siddik M A B, Chaklader M R, Islam M A. 2018. Length–weight and length–length relationships of four endemic fish species caught from Payra River, Southern Bangladesh. Journal of Applied Ichthyology, 34(3): 785–787, https://doi.org/10.1111/jai.13601.CrossRefGoogle Scholar
  33. Nelson J S. 1994. Fishes of the World. John Wiley and Sons, New York.Google Scholar
  34. Nimalathasan B. 2009. Determinants of key performance indicators(KPIs) of private sector banks in Sri Lanka: an application of exploratory factor analysis. The Annals of The “ Ştefan cel Mare ” University of Suceava. Fascicle of The Faculty of Economics and Public Administration, 9(2): 9–17.Google Scholar
  35. Pinheiro A, Teixeira C M, Rego A L, Marques J F, Cabral H N. 2005. Genetic and morphological variation of Solea lascaris(Risso, 1810) along the Portuguese coast. Fisheries Research, 73(1–2): 67–78.CrossRefGoogle Scholar
  36. Poulet N, Berrebi P, Crivelli A J, Lek S, Argillier C. 2004. Genetic and morphometric variations in the pikeperch( Sander lucioperca L.) of a fragmented delta. Archiv für Hydrobiologie, 159(4): 531–554.CrossRefGoogle Scholar
  37. Quilang J P, Basiao Z U, Pagulayan R C, Roderos R R, Barrios E B. 2007. Meristic and morphometric variation in the silver perch, Leiopotherapon plumbeus(Kner, 1864), from three lakes in the Philippines. Journal of Applied Ichthyology, 23(5): 561–567.CrossRefGoogle Scholar
  38. Reist J D. 1985. An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. Canadian Journal of Zoology, 63(6): 1 429–1 439.CrossRefGoogle Scholar
  39. Renaud C B. 2011. Lampreys of the World. An Annotated and Illustrated Catalogue of Lamprey Species Known to Date, FAO Species Catalogue for Fishery Purposes. No. 5. FAO, Rome. 109p.Google Scholar
  40. Ricker W E. 1981. Changes in the average size and average age of pacific salmon. Canadian Journal of Fisheries and Aquatic Science, 38(12): 1 636–1 656.CrossRefGoogle Scholar
  41. Samaee S M, Patzner R A, Mansour N. 2009. Morphological diff erentiation within the population of Siah mahi, Capoeta capoeta gracilis,(Cyprinidae, Teleostei) in a river of the south Caspian Sea basin: a pilot study. Journal of Applied Ichthyology, 25(5): 583–590.CrossRefGoogle Scholar
  42. Sarker J, Patwary S A, Uddin A M M B, Hasan M, Tanmay M H, Kanungo I, Parvej M R. 2016. Macrobenthic community structure—an approach to assess coastal water pollution in Bangladesh. Fisheries and Aquaculture Journal, 7(1): 1 000 157, https://doi.org/10.4172/2150–3508.1000157.Google Scholar
  43. Siddik M A B, Chaklader M R, Hanif M A, Islam M A, Fotedar R. 2016d. Length–weight relationships of four fish species from a coastal artisanal fishery, southern Bangladesh. Journal of Applied Ichthyology, 32(6): 1 300–1 302.CrossRefGoogle Scholar
  44. Siddik M A B, Chaklader R, Hanif A, Nahar A, Ilham I, Cole A, Fotedar R. 2017. Variation in the life–history traits of a Schilbid catfish, Clupisoma garua(Hamilton, 1822) in the coastal waters of southern Bangladesh. Chinese Journal of Oceanology and Limnology, 35(5): 1 189–1 196, https://doi.org/10.1007/s00343–017–6008–6.CrossRefGoogle Scholar
  45. Siddik M A B, Hanif A, Chaklader R, Nahar A, Fotedar R. 2016b. A multivariate morphometric investigation to delineate stock structure of gangetic whiting, Sillaginopsis panijus(Teleostei: Sillaginidae). SpringerPlus, 5: 520.CrossRefGoogle Scholar
  46. Siddik M A B, Hanif A, Chaklader R, Nahar A, Mahmud S. 2015. Fishery biology of gangetic whiting Sillaginopsis panijus(Hamilton, 1822) endemic to Ganges delta, Bangladesh. Egyptian Journal of Aquatic Research, 41(4): 307–313.CrossRefGoogle Scholar
  47. Siddik M A B, Islam M A, Hanif M A, Chaklader M R, Kleindienst R. 2016c. Barramundi, Lates calcarifer(Bloch, 1790): a new dimension to the fish farming in coastal Bangladesh. Journal of Aquaculture Research & Development, 7(12): 1 000 461.Google Scholar
  48. Siddik M, Chaklader M, Hanif M, Islam M, Sharker M, Rahman M. 2016a. Stock identification of critically endangered olive barb, Puntius sarana(Hamilton, 1822) with emphasis on management implications. Journal of Aquaculture Research & Development, 7(2): 1 000 411.Google Scholar
  49. Smith P J, Francis R I C C, McVeagh M. 1991. Loss of genetic diversity due to fishing pressure. Fisheries Research, 10(3–4): 309–316.CrossRefGoogle Scholar
  50. Swain D P, Foote C J. 1999. Stocks and chameleons: the use of phenotypic variation in stock identification. Fisheries Research, 43(1–3): 113–128.CrossRefGoogle Scholar
  51. Turan C, Oral M, Öztürk B, Düzgüneş E. 2006. Morphometric and meristic variation between stocks of bluefish( Pomatomus saltatrix ) in the black, Marmara, Aegean and northeastern Mediterranean seas. Fisheries Research, 79(1–2): 139–147.CrossRefGoogle Scholar
  52. Turan C, Yalcin S, Turan F, Okur E, Akyurt I. 2005. Morphometric comparisons of African catfish, Clarias gariepinus, populations in Turkey. Folia Zoology, 54(1–2): 165–172.Google Scholar
  53. Tzeng T D. 2004. Morphological variation between populations of spotted mackerel( Scomber australasicus ) off Taiwan. Fisheries Research, 68(1–3): 45–55.CrossRefGoogle Scholar
  54. Vatandoust S, Mousavi–Sabet H, Razeghi–Mansour M, AnvariFar H, Heidari A. 2015. Morphometric variation of the endangered Caspian lamprey, Caspiomyzon wagneri(Pisces: Petromyzontidae), from migrating stocks of two rivers along the southern Caspian Sea. Zoological Studies, 54: 56.CrossRefGoogle Scholar
  55. Veasey E A, Schammass E A, Vencovsky R, Martins P S, Bandel G. 2001. Germplasm characterization of Sesbania accessions based on multivariate analyses. Genetic Resources and Crop Evolution, 48: 79–90.CrossRefGoogle Scholar
  56. Wimberger P H. 1992. Plasticity of fish body shape. The eff ects of diet, development, family and age in two species of Geophagus(Pisces: Cichlidae). Biological Journal of the Linnean Society, 45(3): 197–218.Google Scholar
  57. Yadav B N. 1999. Fish and Fisheries. Daya Publishing House, Delhi, India. 323p.Google Scholar
  58. Yu H T, Lee Y J, Huang S W, Chiu T S. 2002. Genetic analysis of the populations of Japanese anchovy(Engraulidae: Engraulis japonicus ) using microsatellite DNA. Marine Biotechnology, 4(5): 471–479.CrossRefGoogle Scholar
  59. Yue G H, Zhu Z Y, Lo L C, Wang C M, Lin G, Feng F, Pang H Y, Li G, Gong P, Li H M, Tan J, Chou R, Lim H, Orban L. 2009. Genetic variation and population structure of Asian seabass( Lates calcarifer ) in the Asia–Pacific region. Aquaculture, 293(1–2): 22–28.CrossRefGoogle Scholar
  60. Zhu Z Y, Lin G, Lo L C, Xu Y X, Feng F, Chou R, Yue G H. 2006. Genetic analyses of Asian seabass stocks using novel polymorphic microsatellites. Aquaculture, 256(1–4): 167–173.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Md Reaz Chaklader
    • 1
    • 3
    Email author
  • Ashfaqun Nahar
    • 2
  • Md Abu Hanif
    • 3
  • Muhammad A.B. Siddik
    • 1
    • 3
  1. 1.School of Molecular and Life SciencesCurtin UniversityBentleyAustralia
  2. 2.Department of Marine Fisheries and OceanographyPatuakhali Science and Technology UniversityPatuakhaliBangladesh
  3. 3.Department of Fisheries Biology and GeneticsPatuakhali Science and Technology UniversityPatuakhaliBangladesh

Personalised recommendations