Skip to main content
Log in

Isolation and characterization of AHL-degrading bacteria from fish and pond sediment

  • Aquaculture and Fisheries
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Quorum sensing (QS) disruption is considered as a potential alternative strategy to combat bacterial diseases in aquaculture. In this study, we isolated and identified bacteria degrading QS molecules from pond sediment and fish intestine. A total of 132 strains were obtained in the enrichment culture, of which two strains were identified as Enterobacter sp. f003 and Staphylococcus sp. sw120, being isolated from the fish intestine and pond sediment, respectively. We found that strains f003 and sw120 could degrade acyl-homoserine lactones (AHLs) and cause no hemolysis of sheep red blood cells. The AHL lactonase ( aiiA ) homologous gene in the two strains was detected in PCR amplification and the high-degrading activity to N-hexanoyl-L-homoserine lactone (C6-HSL) and AHLs secreted from pathogenic Aeromonas hydrophila was assessed. Meanwhile, the artificial infection of cyprinid C arassius auratus gibelio with intraperitoneal injection showed that the two strains were avirulent. Therefore, the obtained indigenous bacteria are candidate probiotics against pathogenic A. hydrophila in aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin B, Austin D A. 2012. Bacterial Fish Pathogens. Springer, Heidelberg, Germany, https://doi.org/10.1007/978–94–007–4884–2.

    Book  Google Scholar 

  • Bergey D H, Holt J G, Krieg N R, Sneath P H A, Staley J T. 1994. Bergey’s Manual of Determinative Bacteriology, Williams and Wilkins. Baltimore Maryland 527.

    Google Scholar 

  • Boyen F, Eeckhaut V, Van Immerseel F, Pasmans F, Ducatelle R, Haesebrouck F. 2009. Quorum sensing in veterinary pathogens: mechanisms, clinical importance and future perspectives. Veterinary Microbiology, 135 (3): 187–195, https://doi.org/10.1016/j.vetmic.2008.12.025.

    Article  Google Scholar 

  • Bruhn J B, Dalsgaard I, Nielsen K F, Buchholtz C, Larsen J L, Gram L. 2005. Quorum sensing signal molecules (acylated homoserine lactones) in gram–negative fish pathogenic bacteria. Diseases of Aquatic Organisms, 65 (1): 43–52, https://doi.org/10.3354/dao065043.

    Article  Google Scholar 

  • Cao Y N, He S X, Zhou Z G, Zhang M C, Mao W, Zhang H T, Yao B. 2012. Orally administered thermostable N–acyl homoserine lactonase from Bacillus sp. strain AI96 attenuates Aeromonas hydrophila infection in zebrafish. Applied and Environmental Microbiology, 78 (6): 1 899–1 908, https://doi.org/10.1128/AEM.06139–11.

    Article  Google Scholar 

  • Chan K G, Yin W F, Sam C K, Koh C L. 2009. A novel medium for the isolation of N–acylhomoserine lactone–degrading bacteria. Journal of Industrial Microbiology & Biotechnology, 36 (2): 247–251, https://doi.org/10.1007/s10295–008–0491–x.

    Article  Google Scholar 

  • Chong T M, Koh C L, Sam C K, Choo Y M, Yin W F, Chan K G. 2012. Characterization of quorum sensing and quorum quenching soil bacteria isolated from Malaysian tropical montane forest. Sensors, 12 (4): 4 846–4 859, https://doi. org/10.3390/s120404846.

    Article  Google Scholar 

  • Chu W, Lu F, Zhu W, Kang C. 2011. Isolation and characterization of new potential probiotic bacteria based on quorum–sensing system. Journal of Applied Microbiology, 110 (1): 202–208, https://doi.org/10.1111/j.1365–2672.2010.04872.x. https://doi.org/10.1016/j.aquaculture.2004.06.031.

    Article  Google Scholar 

  • De Kievit T R, Iglewski B H. 2000. Bacterial quorum sensing in pathogenic relationships. Infection and Immunity, 68 (9): 4 839–4 849, https://doi.org/10.1128/IAI.68.9.4839–4849.2000.

    Article  Google Scholar 

  • Defoirdt T, Boon N, Bossier P, Verstraete W. 2004. Disruption of bacterial quorum sensing: an unexplored strategy to fight infections in aquaculture. Aquaculture, 240 (1): 69–88.

    Article  Google Scholar 

  • Dewhirst F E, Chien C C, Paster B J, Ericson R L, Orcutt R P, Schauer D B, Fox J G. 1999. Phylogeny of the defined murine microbiota: altered Schaedler flora. Applied and Environmental Microbiology, 65 (8): 3 287–3 292.

    Google Scholar 

  • Dong Y H, Wang L H, Xu J L, Zhang H B, Zhang X F, Zhang L H. 2001. Quenching quorum–sensing–dependent bacterial infection by an N–acyl homoserine lactonase. Nature, 411 (6839): 813–817, https://doi.org/10.1038/35081101.

    Article  Google Scholar 

  • Dong Y H, Xu J L, Li X Z, Zhang L H. 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorumsensing signal and attenuates the virulence of Erwinia carotovora. Proceedings of the National Academy of Sciences of the United States of America, 97 (7): 3 526–3 531, https://doi.org/10.1073/pnas.060023897.

    Article  Google Scholar 

  • Garde C, Bjarnsholt T, Givskov M, Jakobsen T H, Hentzer M, Claussen A, Sneppen K, Ferkinghoff–Borg J, Sams T. 2010. Quorum sensing regulation in Aeromonas hydrophila. Journal of Molecular Biology, 396 (4): 849–857, https://doi.org/10.1016/j.jmb.2010.01.002.

    Article  Google Scholar 

  • Ghani N A, Norizan S N, Chan X Y, Yin W F, Chan K G. 2014. Labrenzia sp. BM1: a quorum quenching bacterium that degrades N–acyl homoserine lactones via lactonase activity. Sensors, 14 (7): 11 760–11 769, https://doi.org/10. 3390/s140711760.

    Google Scholar 

  • Hossain M J, Sun D W, McGarey D J, Wrenn S, Alexander L M, Martino M E, Xing Y, Terhune J S, Liles M R. 2014. An asian origin of virulent Aeromonas hydrophila responsible for disease epidemics in united states–farmed catfish. mBio, 5 (3): e00848–14, https://doi.org/10.1128/mBio.00848–14.

    Article  Google Scholar 

  • Huang J H, Shi Y H, Zeng G M, Gu Y L, Chen G Q, Shi L X, Hu Y, Tang B, Zhou J X. 2016. Acyl–homoserine lactone–based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: an overview. Chemosphere, 157: 137–151, https://doi.org/10.1016/j.chemosphere.2016.05.032.

    Article  Google Scholar 

  • Huma N, Shankar P, Kushwah J, Bhushan A, Joshi J, Mukherjee T, Raju S C, Purohit H J, Kalia V C. 2011. Diversity and polymorphism in AHL–lactonase gene (aiiA) of Bacillus. Journal of Microbiology and Biotechnology, 21 (10): 1 001–1 011, https://doi.org/10.4014/jmb.1105.05056.

    Article  Google Scholar 

  • Karber G. 1931. Determination of LD50. Arches of Experimental Pathology and Pharmacology, 62: 480–483.

    Google Scholar 

  • Khajanchi B K, Sha J, Kozlova E V, Erova T E, Suarez G, Sierra J C, Popov V L, Horneman A J, Chopra A K. 2009. N–acylhomoserine lactones involved in quorum sensing control the type VI secretion system, biofilm formation, protease production, and in vivo virulence in a clinical isolate of Aeromonas hydrophila. Microbiology, 155 (11): 3 518–3 531, https://doi.org/10.1099/mic.0.031575–0.

    Article  Google Scholar 

  • Lau Y Y, Sulaiman J, Chen J W, Yin W F, Chan K G. 2013. Quorum sensing activity of Enterobacter asburiae isolated from lettuce leaves. Sensors, 13 (10): 14 189–14 199, https://doi.org/10.3390/s131014189.

    Article  Google Scholar 

  • Lynch M J, Swift S, Kirke D F, Keevil C W, Dodd C E, Williams P. 2002. The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Enviro n mental Microbi o logy, 4 (1): 18–28, https://doi. org/10.1046/j.1462–2920.2002.00264.x.

    Article  Google Scholar 

  • McClean K H, Winson M K, Fish L, Taylor A, Chhabra S R, Camara M, Daykin M, Lamb J H, Swift S, Bycroft B W, Stewart G S A B, Williams P. 1997. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N–acylhomoserine lactones. Microbiology, 143 (12): 3 703–3 711, https://doi.org/10.1099/00221287–143–12–3703.

    Article  Google Scholar 

  • Norizan S N M, Yin W F, Chan K G. 2013. Caffeine as a potential quorum sensing inhibitor. Sensors, 13 (4): 5 117–5 129, https://doi.org/10.3390/s130405117.

    Article  Google Scholar 

  • Pande G S J, Natrah F M I, Flandez A V B, Kumar U, Niu Y F, Bossier P, Defoirdt T. 2015. Isolation of AHL–degrading bacteria from micro–algal cultures and their impact on algal growth and on virulence of Vibrio campbellii to prawn larvae. Applied Microbiology and Biotechnology, 99 (24): 10 805–10 813, https://doi.org/10.1007/s00253–015–6918–1.

    Article  Google Scholar 

  • Smith R S, Iglewski B H. 2003. P. aeruginosa quorum–sensing systems and virulence. Current Opinion in Microbiology, 6 (1): 56–60, https://doi.org/10.1016/S1369–5274(03)00008–0.

    Article  Google Scholar 

  • Swift S, Karlyshev A V, Fish L, Durant E L, Winson M K, Chhabra S R, Williams P, Macintyre S, Stewart G S. 1997. Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N–acylhomoserine lactone signal molecules. Journal of Bacteriology, 179 (17): 5 271–5 281, https://doi.org/10.1128/jb.179.17.5271–5281.1997.

    Article  Google Scholar 

  • Takayama Y, Kato N. 2016. Switch of SpnR function from activating to inhibiting quorum sensing by its exogenous addition. Biochemical and Biophysical Research Communications, 477 (4): 993–997, https://doi.org/10. 1016/j.bbrc.2016.07.017.

    Article  Google Scholar 

  • Tang K H, Zhang X H. 2014. Quorum quenching agents: resources for antivirulence therapy. Marine Drugs, 12 (6): 3 245–3 282, https://doi.org/10.3390/md12063245.

    Article  Google Scholar 

  • Torres M, Rubio–Portillo E, Antón J, Ramos–Esplá A A, Quesada E, Llamas I. 2016. Selection of the N–Acylhomoserine Lactone–degrading bacterium Alteromonas stellipolaris PQQ–42 and of its potential for biocontrol in aquaculture. Frontiers in Microbiology, 7: 646, https://doi.org/10.3389/fmicb.2016.00646.

    Book  Google Scholar 

  • Wang N N, Wu Y F, Pang M D, Liu J, Lu C P, Liu Y J. 2015. Protective efficacy of recombinant hemolysin co–regulated protein (Hcp) of Aeromonas hydrophila in common carp (Cyprinus carpio). Fish & Shellfish Immunology, 46 (2): 297–304, https://doi.org/10.1016/j.fsi.2015.06.019.

    Article  Google Scholar 

  • Waters C M, Bassler B L. 2005. Quorum sensing: cell–to–cell communication in bacteria. Annual Review of Cell and Developmental Biology, 2 1: 319–346, https://doi. org/10.1146/annurev.cellbio.21.012704.131001.

    Google Scholar 

  • Weisburg W G, Barns S M, Pelletier D A, Lane D J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173 (2): 697–703, https://doi. org/10.1128/jb.173.2.697–703.1991.

    Google Scholar 

  • Zhao J, Chen M, Quan C S, Fan S D. 2015. Mechanisms of quorum sensing and strategies for quorum sensing disruption in aquaculture pathogens. Journal of Fish Diseases, 38 (9): 771–786, https://doi.org/10.1111/jfd.12299.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingwen Xi or Jun Xie.

Additional information

Supported by the Central Public-Interest Scientific Institution Basal Research Fund, CAFS (Nos. 2017HY-ZD1008, 2017JBFR03) and the Earmarked Fund for China Agriculture Research System (No. CARS-45)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Xi, B., Qin, T. et al. Isolation and characterization of AHL-degrading bacteria from fish and pond sediment. J. Ocean. Limnol. 37, 1460–1467 (2019). https://doi.org/10.1007/s00343-019-8137-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-8137-6

Key word

Navigation