Skip to main content

Production of bio-fertilizer from Ascophyllum nodosum and Sargassum muticum (Phaeophyceae)

Abstract

Oceans and seas form a large body of water that contains a natural biodiversity. For humans, represents a resource, which makes this a point of interest, from researches to improve the economy. Seaweeds produce many compounds and secondary metabolites that can be used in different fields of industry such as food, agricultural, pharmaceutical and health. Even though seaweeds are ancestral resources, recently it was notorious a global interest in knowing more about its potentials, where biotechnology plays an important role in research. Studies showed that seaweed has many bioactive compounds beneficial to plant development, giving them a great potential as an agricultural fertilizer. Adding seaweeds to the soil provides organic matter, minerals, trace elements, growth plant regulator, metabolites, vitamins, and amino acids and it can work as a soil conditioner. In Portugal, the use of seaweeds for agriculture is important since long time ago. In the past, populations that lived near coastal zone depended on the seaweeds as a family subsistence but, throughout the years, synthetic fertilizers replaced seaweeds. Our work aimed to assess the potential of the extracts obtained from Ascophyllum nodosum and from Sargassum muticum as an agricultural fertilizer. This evaluation was carried out with rice plants (Oryza sativa) and lettuce (Lactuca sativa), in germination bioassays, the culture of rice and lettuce plants in pots, and culture of lettuce plants in hydroponics. For that, seaweed liquid extracts were used in different concentrations in different bioassays. Results show that extracts obtained from two seaweeds, A. nodosum and S. muticum, can be promissory plant biofertilizer at a concentration of 25% and had a positive effect on seed germination, plant development, and production.

This is a preview of subscription content, access via your institution.

References

  • Akila N, Jeyadoss T. 2010. The potential of seaweed liquid fertilizer on the growth and antioxidant enhancement of Helianthus annuus L. Oriental Journal of Chemistry, 26(4): 1 353–1 360.

    Google Scholar 

  • Anisimov M M, Chaikina E L. 2014. Effect of seaweed extracts on the growth of seedling roots of soybean (Glycine max (L.) Merr.) seasonal changes in the activity. Int. J. Curr Res. Acad. Rev., 2(3): 19–23.

    Google Scholar 

  • Arioli T, Mattner S W, Winberg P C. 2015. Applications of seaweed extracts in Australian agriculture: past, present and future. Journal of Applied Phycology, 27(5): 2 007–2 015.

    Article  Google Scholar 

  • Briceño-Domínguez D, Hernández-Carmona G, Moyo M, Stirk W, van Staden J. 2014. Plant growth promoting activity of seaweed liquid extracts produced from Macrocystis pyrifera under different pH and temperature conditions. Journal of Applied Phycology, 26(5): 2 203–2 210.

    Article  Google Scholar 

  • Bruno R L A, Viana J S, da Silva V F, Bruno G B, de Moura M F. 2007. Produção e qualidade de sementes e raízes de cenoura cultivada em solo com adubação orgânica e mineral. Horticultura Brasileira, 25(2): 170–174.

    Article  Google Scholar 

  • Calvo P, Nelson L, Kloepper J W. 2014. Agricultural uses of plant biostimulants. Plant and Soil, 383(1–2): 3–41, https://doi.org/10.1007/s11104-014-2131-8.

    Article  Google Scholar 

  • Coimbra C S. 2006. Inferências filogenéticas na ordem Fucales (Phaeophyceae), com ênfase no gênero Sargassum C. Agardh do Atlântico Sul. Instituto de Biociências, São Paulo, https://doi.org/10.11606/T41.2006.tde-22082007-101454.

    Google Scholar 

  • Craigie J S. 2011. Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23(3): 371–393. https://doi.org/10.1007/s10811-010-9560-4.

    Article  Google Scholar 

  • Cunha-Santino M B, Gouvêa S P, Bianchini Jr I, Vieira A A H. 2008. Oxygen uptake during mineralization of photosynthesized carbon from phytoplankton of the Barra Bonita Reservoir: a mesocosm study. Journal of Biology, 68(1): 115–122.

    Google Scholar 

  • Dantas N P, Pinheiro J F, Santos J H. 1998. Effects of varying concentrations of Sargassum vulgare C. Agardh on growth of lettuce and coriander. Archives of Marine Sciences, 31: 41–46.

    Google Scholar 

  • Erreira A G. 2004. Interferência: competição e alelopatia. In: Ferreira A G, Borghetti F eds. Germinação: do Básico ao Aplicado. Artmed, Porto Alegre. p.251–262.

  • Erulan V, Soundarapandian P, Thirumaran G, Ananthan G. 2009. Studies on the effect of Sargassum polycystum (C. Agardh, 1824) extract on the growth and biochemical composition of Cajanus cajan (L.) Mill sp. American-Eurasian J. Agric. & Environ. Sci., 6(4): 392–399.

    Google Scholar 

  • Eyras M C, Defossé G E, Dellatorre F. 2008. Seaweed compost as an amendment for horticultural soils in Patagonia, Argentina. Compost Science & Utilization, 16(2): 119–124.

    Article  Google Scholar 

  • Fernandes A L T, de Oliveira Silva R. 2011. Avaliação do extrato de algas (Ascophyllum nodosum) no desenvolvimento vegetativo e produtivo do cafeeiro irrigado por gotejamento e cultivado em condições de cerrado. Enciclopédia Biosfera, Centro Cientifico Conhecer - Goiânia, 7(13): 147–157.

    Google Scholar 

  • Gandhiappan K, Perumal P. 2001. Growth promoting effect of seaweed liquid fertilizer (Enteromorpha intestinalis) on the sesame crop plant. Seaweed Research and Utilization, 23(1–2): 23–25.

    Google Scholar 

  • Gressler V. 2010. Composição química e potencial biológico das algas vermelhas marinhas Laurencia filiformis, Laurencia intricata, Plocamium brasiliense e Ochtodes secundiramea da costa brasileira. Faculdade de Ciências Farmacêuticas, São Paulo. https://doi.org/10.11606/T.9.2010.tde-15072011-110848.

    Google Scholar 

  • Hernández-Herrera R M, Santacruz-Ruvalcaba F, Ruiz-López M A, Norrie J, Hernández-Carmona G. 2014. Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of Applied Phycology, 26(1): 619–628.

    Article  Google Scholar 

  • Kawakita, E T, de Souza E A, Uehara D M, de Oliveira Orsi R. 2015. Shelf-life evaluation of hydroalcoholic propolis extract kept under different storage temperatures. Atas de Saude Ambiental, 3(1): 33–46.

    Google Scholar 

  • Limberger P A, Gheller J A. 2012. Efeito da aplicação foliar de extrato de algas, aminoácidos e nutrientes via foliar na produtividade e qualidade de alface crespa. Revista Brasileira de Energias Renováveis, 1: 148–161.

    Google Scholar 

  • Maguire J D. 1962. Speed of germination: aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2(2): 176–177.

    Article  Google Scholar 

  • Mayara Tania P, Deisiane Del Castilo B, Alex Bruno Lobato R, Ryan da Silva R, Sheylla Susan Moreira da Silva de A. 2015. Antioxidant and cytotoxic potential of aqueous crude extract of Acmella oleracea (L.) R.K. Jansen. Journal of Chemical and Pharmaceutical Research, 7(12): 562–569.

    Google Scholar 

  • McHugh D J. 2003. A guide to the seaweed industry. FAO Fisheries Technical Paper, 441: 73–90.

    Google Scholar 

  • Michalak I, Chojnacka K. 2015. Algae as production systems of bioactive compounds. Engineering in Life Sciences, 152(2): 160–176.

    Article  Google Scholar 

  • Monteiro C, Engelen A H, Serrão E A, Santos R. 2009. Habitat differences in the timing of reproduction of the invasive alga Sargassum muticum (Phaeophyta, Sargassaceae) over tidal and lunar cycles. Journal of Phycology, 45(1): 1–7.

    Article  Google Scholar 

  • Moreira G C, Haber L L, Tonin F B, Goto R, Valente MC. 2006. Efeito de diferentes épocas de aplicação da alga marinha Ascophyllum nodosum no desenvolvimento da alface. XLVI Congresso Brasileiro de Olericultura. 30/07 a 04/08/2006, Goiânia, Brasil.

    Google Scholar 

  • Nabti E, Jha B, Hartmann A. 2017. Impact of seaweeds on agricultural crop production as biofertilizer. International Journal of Environmental Science and Technology, 14(5): 1 119–1 134.

    Article  Google Scholar 

  • Pereira L, Correia F. 2015. Algas Marinhas da Costa Portuguesa - Ecologia, Biodiversidade e Utilizações. Nota de Rodapé Edições, Paris. 340p.

    Google Scholar 

  • Pereira L. 2010. Littoral of Viana do Castelo—ALGAE. Uses in agriculture, gastronomy and food industry (Bilingual). Câmara Municipal de Viana do Castelo, Viana do Castelo. 68p.

    Google Scholar 

  • Pereira L. 2018a. Ascophyllum nodosum. MACOI - Portuguese Seaweeds Website, MARE, University of Coimbra, Portugal. https://doi.org/macoi.ci.uc.pt/spec_list_detail.php7spec_id=6AccessedMarch26, Accessed on 2018.

    Google Scholar 

  • Pereira L. 2018b. Sargassum muticum. MACOI - Portuguese Seaweeds Website, MARE, University of Coimbra, Portugal. https://doi.org/macoi.ci.uc.pt/spec_list_detail.php7spec_id=157AccessedMarch26, Accessed on 2018.

    Google Scholar 

  • Plantytec. 2014. Plantytec Group. https://doi.org/www.plantytecgroup.com.br/Accessed March26, Accessed on 2018.

  • Safinaz A F, Ragaa A H 2013. Effect of some red marine algae as biofertilizers on growth of maize (Zea mayz L.) plants. International Food Research Journal, 20(4): 1 629–1 632.

    Google Scholar 

  • Sánchez I, Fernández C. 2005. Impact of the invasive seaweed Sargassum muticum (Phaeophyta) on an intertidal macroalgal assemblage. Journal of Phycology, 41(5): 923–930.

    Article  Google Scholar 

  • Shekhar Sharma H S, Fleming C, Selby C, Rao J R, Martin T. 2014. Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology, 26(1): 465–490.

    Article  Google Scholar 

  • Silva P M D. 2009. Atividades biológicas de extratos de algas marinhas brasileiras. Dissertação de mestrado em Bioquímica. Instituto de Química, SP. https://doi.org/10.11606/D.46.2010.tde-16062010-084634.

    Google Scholar 

  • Thirumaran G, Arumugam M, Arumugam R, Anantharaman P. 2009. Effect of seaweed liquid fertilizer on growth and pigment concentration of Abelmoschus esculentus (I) Medikus. American-Eurasian Journal of Agronomy, 2(2): 57–66.

    Google Scholar 

  • Veeragurunathan V, Meenakshi Sundaram V, Balachandar C. 2011. Comparative studies on fertilizing efficiency of LSF from three seaweeds on the growth of Capsicum annum. Seaweed Res. Utiln., 33(1–2): 143–149.

    Google Scholar 

  • Venkataraman Kumar V, Mohan R, Murugeswari R, Muthusamy M. 1993. Effect of crude and commercial seaweed extracts on seed germination and seedling growth in green gram and black gram. Seaweed Res Utiln, 16(1&2): 23–27.

    Google Scholar 

  • Vijayanand N, Ramya S S, Rathinavel S. 2014. Potential of liquid extracts of Sargassum wightii on growth, biochemical and yield parameters of cluster bean plant. Asian Pacific Journal of Reproduction, 3(2): 150–155.

    Article  Google Scholar 

  • Wang J, Liu S, Qin Y K, Chen X L, Xiong R E, Yu H H, Li K C, Li P C. 2017. Preparation and characterization of controlled-release fertilizers coated with marine polysaccharide derivatives. Chinese Journal of Oceanology and Limnology, 35(5): 1 086–1 093.

    Article  Google Scholar 

  • Zheng S Y, He M L, Jiang J, Zou S M, Yang W N, Zhang Y, Deng J, Wang C H. 2016. Effect of kelp waste extracts on the growth and lipid accumulation of microalgae. Bioresource Technology, 201: 80–88.

    Article  Google Scholar 

Download references

Acknowledgment

This work had the support of Fundaçào para a Ciência e Tecnologia (FCT), through the strategic project UID/MAR/04292/2019 granted to MARE. Also had the support from the European Union through EASME Blue Labs project AMALIA - Algae-to-MArket Lab IdeAs (EASME/EMFF/2016/1.2.1.4/03/SI2.750419). Received funding from European Structural & Investment Funds through the COMPETE Programme and from National Funds through FCT - Fundação para a Ciência e a Tecnologia under the Programme grant SAICTPAC/0019/2015. Co-financed by the European Regional Development Fund through the Interreg Atlantic Area Programme, under the project NASPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiril Bahcevandziev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silva, L.D., Bahcevandziev, K. & Pereira, L. Production of bio-fertilizer from Ascophyllum nodosum and Sargassum muticum (Phaeophyceae). J. Ocean. Limnol. 37, 918–927 (2019). https://doi.org/10.1007/s00343-019-8109-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-8109-x

Keyword

  • fertilizer
  • bioactive compounds
  • Ascophyllum nodosum
  • Sargassum muticum
  • Oryza sativa
  • Lactuca sativa