Skip to main content

Advertisement

Log in

Contribution of trimethylamine N-oxide on the growth and pressure tolerance of deep-sea bacteria

  • Biology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Trimethylamine N-oxide (TMAO) is widely dispersed in marine environments and plays an important role in the biogeochemical cycle of nitrogen. Diverse marine bacteria utilize TMAO as carbon and nitrogen sources or as electron acceptor in anaerobic respiration. Alteration of respiratory component according to the pressure is a common trait of deep-sea bacteria. Deep-sea bacteria from different genera harbor high hydrostatic pressure (HHP) inducible TMAO reductases that are assumed to be constitutively expressed in the deep-sea piezosphere and facilitating quick reaction to TMAO released from fish which is a potential nutrient for bacterial growth. However, whether deep-sea bacteria universally employ this strategy remains unknown. In this study, 237 bacterial strains affiliated to 23 genera of Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria were isolated from seawater, sediment or amphipods collected at different depths. The pressure tolerance and the utilization of TMAO were examined in 74 strains. The results demonstrated no apparent correlation between the depth where the bacteria inhabit and their pressure tolerance, regarding to our samples. Several deep-sea strains from the genera of Alteromonas, Halomonas, Marinobacter, Photobacterium, and Vibrio showed capacity of TMAO utilization, but none of the isolated Acinebacter, Bacillus, Brevundimonas, Muricauda, Novosphingobium, Rheinheimera, Sphingobium and Stenotrophomonas did, indicating the utilization of TMAO is a species-specific feature. Furthermore, we noticed that the ability of TMAO utilization varied among strains of the same species. TMAO has greater impact on the growth of deep-sea isolates of Vibrio neocaledonicus than shallow-water isolates. Taken together, the results describe for the first time the TMAO utilization in deep-sea bacterial strains, and expand our understanding of the physiological characteristic of marine bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrett E L, Kwan H S. 1985. Bacterial reduction of trimethylamine oxide. Annual Review of Microbiology, 39: 131–149.

    Article  Google Scholar 

  • Bashar S, Sanyal S K, Sultana M, Hossain M A. 2017. Emergence of IntI 1 associated bla VIM–2 gene cassettemediated carbapenem resistance in opportunistic pathogen Pseudomonas stutzeri. Emerging Microbes & Infections, 6 (5): e29.

    Google Scholar 

  • Brenner D J, Hickman–Brenner F W, Lee J V, Steigerwalt A G, Fanning G R, Hollis D G, Farmer III J J, Weaver R E, Joseph S W, Seidler R J. 1983. Vibriofurnissii (formerly aerogenic biogroup of vibriofluvialis), a new species isolated from human feces and the environment. Journal of Clinical Microbiology, 18 (4): 816–824.

    Google Scholar 

  • Courtenay E S, Capp M W, Anderson C F, Record M T. 2000. Vapor pressure osmometry studies of osmolyte–protein interactions: implications for the action of osmoprotectants in vivo and for the interpretation of “osmotic stress” experiments in vitro. Biochemistry, 39 (15): 4 455–4 471.

    Article  Google Scholar 

  • DeLong E F, Preston C M, Mincer T, Rich V, Hallam S J, Frigaard N U, Martinez A, Sullivan M B, Edwards R, Brito B R, Chisholm S W, Karl D M. 2006. Community genomics among stratified microbial assemblages in the ocean's interior. Science, 311 (5760): 496–503.

    Article  Google Scholar 

  • Dong X, Wang H L, Zou P Z, Chen J Y, Liu Z, Wang X P, Huang J. 2017. Complete genome sequence of Vibrio campbellii strain 20130629003S01 isolated from shrimp with acute hepatopancreatic necrosis disease. Gut Pathogens, 9: 31.

    Article  Google Scholar 

  • Dos Santos J P, Iobbi–Nivol C, Couillault C, Giordano G, Méjean V. 1998. Molecular analysis of the trimethylamine N–oxide (TMAO) reductase respiratory system from a Shewanella species. Journal of Molecular Biology, 284 (2): 421–433.

    Article  Google Scholar 

  • Dunn A K, Stabb E V. 2008. Genetic analysis of trimethylamine N–oxide reductases in the light organ symbiont Vibriofischeri ES114. Journal of Bacteriology, 190 (17): 5 814–5 823.

    Article  Google Scholar 

  • Fang J S, Zhang L, Bazylinski D A. 2010. Deep–sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends in Microbiology, 18 (9): 413–422.

    Article  Google Scholar 

  • Ge X L, Wexler A S, Clegg S L. 2011. Atmospheric amines—part I. A review. Atmospheric Environment, 45 (3): 524–546.

    Article  Google Scholar 

  • Ge Y, Zhu J, Ye X, Yang Y. 2017. Spoilage potential characterization of Shewanella and Pseudomonas isolated from spoiled large yellow croaker ( Pseudosciaena crocea ). Letters in Applied Microbiology, 64 (1): 86–93.

    Article  Google Scholar 

  • Gibb S W, Hatton A D. 2004. The occurrence and distribution of trimethylamine–N–oxide in Antarctic coastal waters. Marine Chemistry, 91 (1–4): 65–75.

    Article  Google Scholar 

  • Gillett M B, Suko J R, Santoso F O, Yancey P H. 1997. Elevated levels of trimethylamine oxide in muscles of deep–sea gadiform teleosts: a high–pressure adaptation? Journal of Experimental Zoology, 279 (4): 386–391.

    Article  Google Scholar 

  • He H L, Chen X L, Zhang X Y, Sun C Y, Zou B C, Zhang Y Z. 2009. Novel use for the osmolyte trimethylamine N–oxide: retaining the psychrophilic characters of coldadapted protease deseasin MCP–01 and simultaneously improving its thermostability. Marine Biotechnology, 11 (6): 710–716.

    Article  Google Scholar 

  • Jannasch H W, Jones G E. 1959. Bacterial populations in sea water as determined by different methods of enumeration. Limnology and Oceanography, 4 (2): 128–139.

    Article  Google Scholar 

  • Ji B Y, Gimenez G, Barbe V, Vacherie B, Rouy Z, Amrani A, Fardeau M L, Bertin P, Alazard D, Leroy S, Talla E, Ollivier B, Dolla A, Pradel N. 2013. Complete genome sequence of the piezophilic, mesophilic, sulfate–reducing bacterium Desulfovibrio hydrothermalis AM13 T. Genome Announcements, 1 (1): e00226–12.

    Article  Google Scholar 

  • Jian H H, Li S K, Tang X X, Xiao X. 2016. A transcriptome resource for the deep–sea bacterium Shewanella piezotolerans WP3 under cold and high hydrostatic pressure shock stress. Marine Genomics, 30: 87–91.

    Article  Google Scholar 

  • Kato C, Nogi Y, Arakaw S. 2008. Isolation, cultivation, and diversity of deep–sea piezophiles. In: Michiels C, Bartlett D, Aersten A eds. High–pressure Microbiology. ASM Press, Washington, DC. p.203–217.

  • Lauro F M, Bartlett D H. 2008. Prokaryotic lifestyles in deep sea habitats. Extremophiles, 12 (1): 15–25.

    Article  Google Scholar 

  • Le Bihan T, Rayner J, Roy M M, Spagnolo L. 2013. Photobacterium profundum under pressure: a MS–based label–free quantitative proteomics study. PLoS One, 8 (5): e60897.

    Article  Google Scholar 

  • Lee J V, Shread P, Furniss A L, Bryant T N. 1981. Taxonomy and description of Vibriofluvialis sp. nov. (synonym group F vibrios, group EF6). Journal of Applied Bacteriology, 50 (1): 73–94.

    Article  Google Scholar 

  • Lee K M, Park Y, Bari W, Yoon M Y, Go J, Kim S C, Lee H I, Yoon S S. 2012. Activation of cholera toxin production by anaerobic respiration of trimethylamine N–oxide in Vibrio cholerae. Journal of Biological Chemistry, 287 (47): 39 742–39 752.

    Article  Google Scholar 

  • Lidbury I D, Murrell J C, Chen Y. 2015. Trimethylamine and trimethylamine N–oxide are supplementary energy sources for a marine heterotrophic bacterium: implications for marine carbon and nitrogen cycling. The ISME Journal, 9 (3): 760–769.

    Article  Google Scholar 

  • Lidbury I, Murrell J C, Chen Y. 2014. Trimethylamine N–oxide metabolism by abundant marine heterotrophic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 111 (7): 2 710–2 715.

    Article  Google Scholar 

  • Lucas S, Han J, Lapidus A, Cheng J F, Goodwin L A, Pitluck S, Peters L, Mikhailova N, Teshima H, Detter J C, Han C, Tapia R, Land M, Hauser L, Kyrpides N C, Ivanova N, Pagani I, Vannier P, Oger P, Bartlett D H, Noll K M, Woyke T, Jebbar M. 2012. Complete Genome Sequence of the Thermophilic, Piezophilic, Heterotrophic Bacterium Marinitoga piezophila KA3. Journal of Bacteriology, 194 (21): 5 974–5 975.

    Article  Google Scholar 

  • Martini S, Al Ali B, Garel M, Nerini D, Grossi V, Pacton M, Casalot L, Cuny P, Tamburini C. 2013. Effects of hydrostatic pressure on growth and luminescence of a moderately–piezophilic luminous bacteria Photobacterium phosphoreum ANT–2200. PLoS One, 8 (6): e66580.

    Article  Google Scholar 

  • McCrindle S L, Kappler U, McEwan A G. 2005. Microbial dimethylsulfoxide and trimethylamine–N–oxide respiration. Advances in Microbial Physiology, 50: 147–198.

    Article  Google Scholar 

  • Meyer J L, Dillard B A, Rodgers J M, Ritchie K B, Paul V J, Teplitski M. 2015. Draft genome sequence of Halomonas meridiana R1t3 isolated from the surface microbiota of the Caribbean Elkhorn coral Acropora palmata. Standards in Genomic Sciences, 10 (1): 75.

    Article  Google Scholar 

  • Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A, Koide O, Kikuchi T, Miyazaki J, Koba K, Yoshida N, Sunamura M, Takai K. 2015. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proceedings of the National Academy of Sciences of the United States of America, 112 (11): e1 230–E1 236.

    Article  Google Scholar 

  • Ohke Y, Sakoda A, Kato C, Sambongi Y, Kawamoto J, Kurihara T, Tamegai H. 2013. Regulation of cytochrome c–and quinol oxidases, and piezotolerance of their activities in the deep–sea piezophile Shewanella violacea DSS12 in response to growth conditions. Bioscience, Biotechnology, and Biochemistry, 77 (7): 1 522–1 528.

    Article  Google Scholar 

  • Parkes R J, Sellek G, Webster G, Martin D, Anders E, Weightman A J, Sass H. 2009. Culturable prokaryotic diversity of deep, gas hydrate sediments: first use of a continuous high–pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG). Environmental microbiology, 11 (12): 3 140–3 153.

    Article  Google Scholar 

  • Pathom–Aree W, Nogi Y, Sutcliffe I C, Ward A C, Horikoshi K, Bull A T, Goodfellow M. 2006. Dermacoccus abyssi sp. nov., a piezotolerant actinomycete isolated from the Mariana Trench. International Journal of Systematic and Evolutionary Microbiology, 56 (6): 1 233–1 237.

    Article  Google Scholar 

  • Petrov E, Rohde P R, Cornell B, Martinac B. 2012. The protective effect of osmoprotectant TMAO on bacterial mechanosensitive channels of small conductance MscS/MscK under high hydrostatic pressure. Channels ( Austin ), 6 (4): 262–271.

    Article  Google Scholar 

  • Proctor L M, Gunsalus R P. 2000. Anaerobic respiratory growth of Vibrio harveyi, Vibriofischeri and Photobacterium leiognathi with trimethylamine N–oxide, nitrate and fumarate: ecological implications. Environmental Microbiology, 2 (4): 399–406.

    Article  Google Scholar 

  • Ringø E, Stenberg E, Strøm A R. 1984. Amino acid and lactate catabolism in trimethylamine oxide respiration of alteromonas putrefaciens NCMB–1735. Applied and Environmental Microbiology, 47 (5): 1 084–1 089.

    Google Scholar 

  • Saad–Nehme J, Silva J L, Meyer–Fernandes J R. 2001. Osmolytes protect mitochondrial F 0 F 1–ATPase complex against pressure inactivation. Biochimica et Biophysica Acta ( BBA )–Protein Structure and Molecular Enzymology, 1546 (1): 164–170.

    Article  Google Scholar 

  • Salazar G, Cornejo–Castillo F M, Benítez–Barrios V, Fraile–Nuez E, Álvarez–Salgado X A, Duarte C M, Gasol J M, Acinas S G. 2016. Global diversity and biogeography of deep–sea pelagic prokaryotes. The ISME Journal, 10 (3): 596–608.

    Article  Google Scholar 

  • Seibel B A, Walsh P J. 2002. Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage. The Journal of Experimental Biology, 205 (Pt 3): 297–306.

    Google Scholar 

  • Simon–Colin C, Raguénès G, Cozien J, Guezennec J G. 2008. Halomonas profundus sp. nov., a new PHA–producing bacterium isolated from a deep–sea hydrothermal vent shrimp. Journal of Applied Microbiology, 104 (5): 1 425–1 432.

    Article  Google Scholar 

  • Smith R S, Pineiro S A, Singh R, Romberg E, Labib M E, Williams H N. 2004. Discrepancies in bacterial recovery from dental unit water samples on R2A medium and a commercial sampling device. Current Microbiology, 48 (4): 243–246.

    Article  Google Scholar 

  • Sogin M L, Morrison H G, Huber J A, Mark Welch D, Huse S M, Neal P R, Arrieta J M, Herndl G J. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proceedings of the National Academy of Sciences of the United States of America, 103 (32): 12 115–12 120.

    Article  Google Scholar 

  • Takai K, Miyazaki M, Hirayama H, Nakagawa S, Querellou J, Godfroy A. 2009. Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep–sea hydrothermal vent chimney. Environmental Microbiology, 11 (8): 1 983–1 997.

    Article  Google Scholar 

  • Tamburini C, Boutrif M, Garel M, Colwell R R, Deming J W. 2013. Prokaryotic responses to hydrostatic pressure in the ocean—a review. Environmental Microbiology, 15 (5): 1 262–1 274.

    Article  Google Scholar 

  • Tamegai H, Nishikawa S, Haga M, Bartlett D H. 2012. The respiratory system of the piezophile Photobacterium profundum SS9 grown under various pressures. Bioscience, Biotechnology, and Biochemistry, 76 (8): 1 506–1 510.

    Article  Google Scholar 

  • Tarn J, Peoples L M, Hardy K, Cameron J, Bartlett D H. 2016. Identification of free–living and particle–associated microbial communities present in hadal regions of the mariana trench. Frontiers in Microbiology, 7: 665.

    Article  Google Scholar 

  • Tindall B J, Rosselló–Móra R, Busse H J, Ludwig W, Kämpfer P. 2010. Notes on the characterization of prokaryote strains for taxonomic purposes. International Journal of Systematic and Evolutionary Microbiology, 60 (1): 249–266.

    Article  Google Scholar 

  • Ufnal M, Zadlo A, Ostaszewski R. 2015. TMAO: a small molecule of great expectations. Nutrition, 31 (11–12): 1 317–1 323.

    Article  Google Scholar 

  • Vezzi A, Campanaro S, D’Angelo M, Simonato F, Vitulo N, Lauro F M, Cestaro A, Malacrida G, Simionati B, Cannata N, Romualdi C, Bartlett D H, Valle G. 2005. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science, 307 (5714): 1 459–1 461.

    Article  Google Scholar 

  • Wang Q Y, Liu Q, Ma Y, Zhou L Y, Zhang Y X. 2007. Isolation, sequencing and characterization of cluster genes involved in the biosynthesis and utilization of the siderophore of marine fish pathogen Vibrio alginolyticus. Archives of Microbiology, 188 (4): 433–439.

    Article  Google Scholar 

  • Xiong L, Jian H H, Zhang Y X, Xiao X. 2016. The two sets of DMSO respiratory systems of Shewanella piezotolerans WP3 are involved in deep sea environmental adaptation. Frontiers in Microbiology, 7: 1418.

    Google Scholar 

  • Yancey P H, Clark M E, Hand S C, Bowlus R D, Somero G N. 1982. Living with water stress: evolution of osmolyte systems. Science, 217 (4566): 1 214–1 222.

    Article  Google Scholar 

  • Yancey P H, Fyfe–Johnson A L, Kelly R H, Walker V P, Aunon M T. 2001. Trimethylamine oxide counteracts effects of hydrostatic pressure on proteins of deep–sea teleosts. Journal of Experimental Zoology, 289 (3): 172–176.

    Article  Google Scholar 

  • Yancey P H, Gerringer M E, Drazen J C, Rowden A A, Jamieson A. 2014. Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proceedings of the National Academy of Sciences of the United States of America, 111 (12): 4 461–4 465.

    Article  Google Scholar 

  • Yin Q J, Zhang W J, Qi X Q, Zhang S D, Jiang T, Li X G, Chen Y, Santini C L, Zhou H, Chou I M, Wu L F. 2018. High hydrostatic pressure inducible trimethylamine N–oxide reductase improves the pressure tolerance of piezosensitive bacteria Vibriofluvialis. Frontiers in Microbiology, 8: 2646.

    Article  Google Scholar 

  • Yoo S H, Kim M J, Roh K H, Kim S H, Park D W, Sohn J W, Yoon Y K. 2012. Liver abscess caused by Brevundimonas vesicularis in an immunocompetent patient. Journal of Medical Microbiology, 61 (10): 1 476–1 479.

    Article  Google Scholar 

  • Yoon S H, Ha S M, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole–genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67 (5): 1 613–1 617.

    Article  Google Scholar 

  • Zhang S D, Barbe V, Garel M, Zhang W J, Chen H T, Santini C L, Murat D, Jing H M, Zhao Y, Lajus A, Martini S, Pradel N, Tamburini C, Wu L F. 2014. Genome Sequence of Luminous Piezophile Photobacterium phosphoreum ANT–2200. Genome Announcement, 2 (2): e00096–14.

    Google Scholar 

  • Zhang S D, Santini C L, Zhang W J, Barbe V, Mangenot S, Guyomar C, Garel M, Chen H T, Li X G, Yin Q J, Zhao Y, Armengaud J, Gaillard J C, Martini S, Pradel N, Vidaud C, Alberto F, Médigue C, Tamburini C, Wu L F. 2016. Genomic and physiological analysis reveals versatile metabolic capacity of deep–sea Photobacterium phosphoreum ANT–2200. Extremophiles, 20 (3): 301–310.

    Article  Google Scholar 

  • Zhu Y J, Jameson E, Parslow R A, Lidbury I, Fu T T, Dafforn T R, Schäfer H, Chen Y. 2014. Identification and characterization of trimethylamine N–oxide (TMAO) demethylase and TMAO permease in Methylocella silvestris BL2. Environmental Microbiology, 16 (10): 3 318–3 330.

    Article  Google Scholar 

  • Zou Q, Bennion B J, Daggett V, Murphy K P. 2002. The molecular mechanism of stabilization of proteins by TMAO and its ability to counteract the effects of urea. Journal of the American Chemical Society, 124 (7): 1 192–1 202.

    Article  Google Scholar 

Download references

Acknowledgement

We thank Dr. HE Lisheng for sharing the South China Sea samples, Prof. Zhang Xiaohua for Vibrio fluvialis type strain ATCC33809.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijia Zhang.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 41506147, 91751108), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB06010203), the Key Research and Development Program of Hainan Province (No. ZDYF2016211), the Natural Science Foundation of Hainan Province (No. 20163151), the Sanya City (No. 2016PT18), and a grant for LIA-MagMC from the Centre National de la Recherche Scientifique

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Q., Zhang, W., Li, X. et al. Contribution of trimethylamine N-oxide on the growth and pressure tolerance of deep-sea bacteria. J. Ocean. Limnol. 37, 210–222 (2019). https://doi.org/10.1007/s00343-019-7377-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-7377-9

Keyword

Navigation