Skip to main content
Log in

Isolation and characterization of 49 polymorphic microsatellite loci for Decapterus maruadsi using SLAF-seq, and cross-amplification to related species

  • Biology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Decapterus maruadsi is a commercially important species in China, but has been heavily exploited in some areas. There is a growing need to develop microsatellites promoting its genetic research for the adequate management of this fishery resources. The recently developed specific-locus amplified fragment sequencing (SLAF-seq) is an efficient and high-resolution method for genome-wide microsatellite markers discovery. In this study, 28 905 microsatellites (mono- to hexa-nucleotide repeats) were identified using SLAF-seq technology, of which di-nucleotide was the most frequent (13 590, 47.02%), followed by mono-nucleotide (8 138, 28.15%), tri-nucleotide (5 727, 19.81%), tetra-nucleotide (1 104, 3.82%), pentanucleotide (234, 0.81%), and hexa-nucleotide (112, 0.39%). One hundred and thirty-two microsatellite loci (di- and tri-nucleotide) were randomly selected for amplification and polymorphism, of which 49 were highly polymorphic and well-resolved. The average number of alleles per locus was 13.63, ranging from 4 to 25, and allele sizes varied between 110 bp and 309 bp. The observed heterozygosity ( Ho ) and expected heterozygosity ( He ) ranged from 0.233 to 1.000 and from 0.374 to 0.959, with mean values of 0.738 and 0.836, respectively. The polymorphism information content (PIC) ranged from 0.341 to 0.941 (mean=0.806). However, 12 loci deviated from Hardy-Weinberg equilibrium. Furthermore, transferability tests were also successful in validating the utility of the developed markers in five phylogenetically related species of family Carangidae. A total of 48 microsatellite markers were successfully cross-amplified in Decapterus macarellus, Decapterus macrosoma, Decapterus kurroides, Trachurus japonicus, and Selaroides leptolepis. The present microsatellites provided the first known set of microsatellite DNA markers for D. maruadsi, D. macarellus, D. kurroides, and D. macrosoma, and would be useful for further population genetic and molecular phylogeny studies as well as help with the fisheries management formulation and implementation of the understudied species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addamo A M, García–Jiménez R, Taviani M, Machordom A. 2015. Development of microsatellite markers in the deepsea cup coral Desmophyllum dianthus by 454 sequencing and cross–species amplifications in Scleractinia order. Journal of Heredity, 106 (3): 322–330, https://doi. org/10.1093/jhered/esv010.

    Article  Google Scholar 

  • Altshuler D, Pollara V J, Cowles C R, Van Etten W J, Baldwin J, Linton L, Lander E S. 2000. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature, 407 (6803): 513–516.

    Article  Google Scholar 

  • Babbucci M, Zane L, Andaloro F, Patarnello T. 2006. Isolation and characterization of microsatellite loci from yellowtail Seriola dumerilii (Perciformes: Carangidae). Molecular Ecology Notes, 6 (4): 1 126–1 128, https://doi.org/10.1111/j.1471–8286.2006.01459.x.

    Article  Google Scholar 

  • Botstein D, White R L, Skolnick M, Davis R W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32 (3): 314–331.

    Google Scholar 

  • Carreras–Carbonell J, Macpherson E, Pascual M. 2008. Utility of pairwise mtDNA genetic distances for predicting crossspecies microsatellite amplification and polymorphism success in fishes. Conservation Genetics, 9 (1): 181–190, https://doi.org/10.1007/s10592–007–9322–2.

    Article  Google Scholar 

  • Castoe T A, Streicher J W, Meik J M, Ingrasci M J, Poole A W, De Koning A P J, Campbell J A, Parkinson C L, Smith E N, Pollock D D. 2012. Thousands of microsatellite loci from the venomous coralsnake Micrurus fulvius and variability of select loci across populations and related species. Molecular Ecology Resources, 12 (6): 1 105–1 113, https://doi.org/10.1111/1755–0998.12000.

    Article  Google Scholar 

  • Chapuis M P, Estoup A. 2007. Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution, 24 (3): 621–631, https://doi.org/10. 1093/molbev/msl191.

    Article  Google Scholar 

  • Chen G B, Li Y Z, Zhao X Y, Chen Y Z, Jin X S. 2006. Acoustic assessment of five groups commercial fish in South China Sea. Acta Oceanologica Sinica, 28 (2): 128–134. (in Chinese with English abstract)

    Google Scholar 

  • Chen S L, Xing S C, Xu G B, Liao X L, Yang J F. 2009. Isolation and characterization of 10 polymorphic microsatellite loci from small yellow croaker ( Pseudosciaena polyactis ). Conservation Genetics, 10 (5): 1 469–1 471, https://doi.org/10.1007/s10592–008–9762–3.

    Article  Google Scholar 

  • Gill P, Urquhart A, Millican E, Oldroyd N, Watson S, Sparkes R, Kimpton C P. 1996. A new method of STR interpretation using inferential logic–development of a criminal intelligence database. International Journal of Legal Medicine, 109 (1): 14–22, https://doi.org/10.1007/BF01369596.

    Article  Google Scholar 

  • Goudet J. 2002. FSTAT: a program to estimate and test gene diversities and fixation indices (Version 2.9.3.2). https://www2.unil.ch/popgen/softwares/fstat.htm. Accessed on 2017–07–27.

    Google Scholar 

  • Henshaw M T, Toth A L, Young T J. 2011. Development of new microsatellite loci for the genus Polistes from publicly available expressed sequence tag sequences. Insectes Sociaux, 58 (4): 581–585, https://doi.org/10.1007/s00040–011–0164–z.

    Article  Google Scholar 

  • Heras S, Planella L, Caldarazzo I, Vera M, García–Marín J L, Roldán M I. 2016. Development and characterization of novel microsatellite markers by Next Generation Sequencing for the blue and red shrimp Aristeus antennatus. PeerJ, 4 (3): e2200, https://doi.org/10.7717/peerj.2200.

    Article  Google Scholar 

  • Kalinowski S T, Taper M L, Marshall T C. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16 (5): 1 099–1 106, https://doi.org/10.1111/j.1365–294X.2007.03089.x.

    Article  Google Scholar 

  • Khan G, Zhang F Q, Gao Q B, Jiao X J, Fu P C, Xing R, Zhang J H, Chen S L. 2014. Isolation of 16 microsatellite markers for Spiraea alpina and S. mongolica (Rosaceae) of the Qinghai–Tibet Plateau. Applications in Plant Sciences, 2 (1): 1 300 059, https://doi.org/10.3732/apps.1300059.

    Article  Google Scholar 

  • Li F Q, Xie Y J, Zhou Z C, Chen H P, Chu X L. 2017. The distribution types and characteristics of SSR loci based on SLAF–seq in Ormosia hosiei genome. Molecular Plant Breeding, 15 (5): 1 774–1 781. (in Chinese with English abstract)

    Google Scholar 

  • Li M, Chen Z Z, Chen T, Xiong D, Fan J T, Liang P W. 2016. Whole mitogenome of the Japanese scad Decapterus maruadsi (Perciformes: Carangidae). Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 27 (1): 306–307, https://doi.org/10.3109/19401736.2014.892089.

    Article  Google Scholar 

  • Liu J, Wu R X, Kang B, Ma L. 2016. Fishes of Beibu Gulf. Science Press, Beijing, China. (in Chinese)

    Google Scholar 

  • Lu Z B, Dai Q S, Yan Y M. 2000. An estimation of resources of chub mackerel, round scad and other pelagic fish stocks in the Taiwan Strait and the adjacent waters. Journal of Fishery Sciences of China, 7 (1): 41–45. (in Chinese with English abstract)

    Google Scholar 

  • Luan M B, Yang Z M, Zhu J J, Deng X, Liu C C, Wang X F, Xu Y, Sun Z M, Chen J H. 2016. Identification, evaluation, and application of the genomic–SSR loci in ramie. Acta Societatis Botanicorum Poloniae, 85 (3): 3 510, https://doi.org/10.5586/asbp.3510.

    Article  Google Scholar 

  • Michael O, Jonathan M W. 1997. Microsatellite DNA in fishes. Reviews in Fish Biology and Fisheries, 7 (3): 331–363, https://doi.org/10.1023/A:1018443912945.

    Article  Google Scholar 

  • Ministry of Agriculture Fishery Administration. 1999–2017. China Fishery Statistical Yearbook: 1999–2017. China Agricultural Press, Beijing, China. (in Chinese)

    Google Scholar 

  • Ohara E, Nishimura T, Sakamoto T, Nagakura Y, Mushiake K, Okamoto N. 2003. Isolation and characterization of microsatellite loci from yellowtail Seriola quinqueradiata and cross–species amplification within the genus Seriola. Molecular Ecology Notes, 3 (3): 390–391, https://doi.org/10.1046/j.1471–8286.2003.00460.x.

    Article  Google Scholar 

  • Renshaw M A, Patton J C, Rexroad III C E, Gold J R. 2007. Isolation and characterization of dinucleotide microsatellites in greater amberjack, Seriola dumerili. Conservation Genetics, 8 (4): 1 009–1 011, https://doi.org/10.1007/s10592–006–9221–y.

    Article  Google Scholar 

  • Restrepo A, Páez V P, Vásquez A, Daza J M. 2015. Rapid microsatellite marker development in the endangered neotropical freshwater turtle Podocnemis lewyana (Testudines: Podocnemididae) using 454 sequencing. Biochemical Systematics and Ecology, 59: 220–225, https://doi.org/10.1016/j.bse.2015.01.017.

    Article  Google Scholar 

  • Rice W R. 1989. Analyzing tables of statistical tests. Evolution, 43 (1): 223–225, https://doi.org/10.1111/j.1558–5646.1989. tb04220.x.

    Article  Google Scholar 

  • Rousset F. 2008. GENEPOP’007: a complete reimplementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources, 8 (1): 103–106, https://doi.org/10.1111/j.1471–8286.2007.01931.x.

    Article  Google Scholar 

  • Sambrook J, Russell D W. 2002. Molecular Cloning: A Laboratory Manual. Huang P T, Trans. 3rd ed. Science Press, Beijing, China. (in Chinese)

    Google Scholar 

  • Seyoum S, Denison S H, Tringali M D. 2007. Isolation and characterization of 13 polymorphic microsatellite loci for the Florida pompano, Trachinotus carolinus. Molecular Ecology Notes, 7 (1): 141–143, https://doi.org/10.1111/j.1471–8286.2006.01556.x.

    Article  Google Scholar 

  • Shan T F, Pang S J, Li J, Li X, Su L. 2015. Construction of a high–density genetic map and mapping of a sex–linked locus for the brown alga Undaria pinnatifida (Phaeophyceae) based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Genomics, 16: 902, https://doi.org/10.1186/s12864–015–2184–y.

    Article  Google Scholar 

  • Sousa–Santos C, Fonseca P J, Amorim M C P. 2015. Development and characterization of novel microsatellite loci for Lusitanian toadfish, Halobatrachus didactylus. PeerJ, 3: e731, https://doi.org/10.7717/peerj.731.

    Book  Google Scholar 

  • Stabile J, Lipus D, Maceda L, Maltz M, Roy N, Wirgin I. 2016. Microsatellite DNA analysis of spatial and temporal population structuring of Phragmites australis along the Hudson River Estuary. Biological Invasions, 18 (9): 2 517–2 529, https://doi.org/10.1007/s10530–016–1157–7.

    Article  Google Scholar 

  • Sun X W, Liu D Y, Zhang X F, Li W B, Liu H, Hong W G, Jiang C B, Guan N, Ma C X, Zeng H P, Xu C H, Song J, Huang L, Wang C M, Shi J J, Wang R, Zheng X H, Lu C Y, Wang X W, Zheng H K. 2013. SLAF–Seq: an efficient method of large–scale de novo SNP discovery and genotyping using high–throughput sequencing. PLoS One, 8 (3): e58700, https://doi.org/10.1371/journal.pone. 0058700.

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30 (12): 2 725–2 729, https://doi.org/10.1093/molbev/mst197.

    Article  Google Scholar 

  • Tong Y H, Mai R L, Chen J M, Li X M. 2012. Survey and analysis of landings on Hainan Island. South China Fisheries Science, 8 (6): 85–91. (in Chinese with English abstract)

    Google Scholar 

  • Umino T, Ueno K, Mihara T, Koike M, Watanabe M, Ahmad–Syazni K, Ishitani M, Ohara K. 2013. Isolation of eleven polymorphic microsatellite loci for the endangered Sillago parvisquamis and cross–species amplification with Sillago japonica. Conservation Genetics Resources, 5 (3): 771–773, https://doi.org/10.1007/s12686–013–9904–x.

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson W F, Wills D P M, Shipley P. 2004. MICRO–CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4 (3): 535–538, https://doi. org/10.1111/j.1471–8286.2004.00684.x.

    Article  Google Scholar 

  • Villanova G V, Vera M, Díaz J, Martinez P, Calcaterra N B, Arranz S E. 2015. Isolation and characterization of 20 polymorphic microsatellite loci in the migratory freshwater fish Leporinus obtusidens (Characiformes: Anostomidae) using 454 shotgun pyrosequencing. Journal of Fish Biology, 86 (3): 1 209–1 217, https://doi. org/10.1111/jfb.12632.

    Article  Google Scholar 

  • Wu R X, Zhang H R, Niu S F, Zhai Y, Liu X F. 2016. Development of polymorphic microsatellites for Sillago sihama based on next–generation sequencing and transferability to Sillago japonica. Genetics and Molecular Research, 15 (4): gmr15049046, https://doi. org/10.4238/gmr15049046.

    Book  Google Scholar 

  • Zhang H R, Liang Z B, Wu R X, Niu S F, Ke Z Y, Su S, Wei H, Wang Q, Sun B. 2017b. Development of microsatellite loci for Hairtail ( Trichiurus japonicus ) by using SLAFseq technology and cross–species amplification test. Genomics and Applied Biology. http://kns.cnki.net/kcms/detail/45.1369.Q.20170705.1459.004.html. (in press) (in Chinese with English abstract)

    Google Scholar 

  • Zhang H R, Liang Z B, Wu R X, Niu S F, Liang Y, Wang Q, Wei H, Xiao Y, Sun B. 2017a. Microsatellite loci isolation in the Savalai Hairtail ( Lepturacanthus savala ) based on SLAF–seq technology and transferability in the related species. Genomics and Applied Biology. http://kns.cnki. net/kcms/detail/45.1369.Q.20170926.1457.002.html. (in press) (in Chinese with English abstract)

    Google Scholar 

  • Zhang H R, Niu S F, Wu R X, Zhai Y, Tian L T. 2016. Development and characterization of 26 polymorphic microsatellite markers in Lateolabrax maculat u s and cross–species amplification for the phylogenetically related taxa. Biochemical Systematics and Ecology, 66: 326–330.

    Article  Google Scholar 

  • Zhang Q H, Cheng J H, Xu H X, Shen X Q, Yu G P, Zheng Y J. 2007. The Fishery Resources and Sustainable Utilization of the East China Sea. Fudan University Press, Shanghai, China. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renxie Wu.

Additional information

Supported by the PhD Start-up Fund of Guangdong Provincial Natural Science Foundation (No. 2016A030310329), the Special Program for Outstanding Young Teachers of Guangdong Ocean University (No. HDYQ2017002), the National Natural Science Foundation of China (No. 31372532), and the Program for Scientific Research Start-up Funds of Guangdong Ocean University (No. R17040).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, S., Zhai, Y., Wu, R. et al. Isolation and characterization of 49 polymorphic microsatellite loci for Decapterus maruadsi using SLAF-seq, and cross-amplification to related species. J. Ocean. Limnol. 37, 245–255 (2019). https://doi.org/10.1007/s00343-019-7299-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-7299-6

Keyword

Navigation