Specific genetic variation in two non-motile substrains of the model cyanobacterium Synechocystis sp. PCC 6803

Abstract

Synechocystis sp. PCC 6803 is a model organism widely used in cyanobacterium biology and biotechnology. To know the genetic background of substrains of Synechocystis sp. PCC 6803 is important for further research and application. In this study, we reported the genome sequences of two non-motile wild-type substrains of Synechocystis sp. PCC 6803 using whole genome resequencing. 55/56 putative single nucleotide polymorphisms (SNPs) and 8/9 Indels (insertion and deletion) were identified. Among these, 47 SNPs were found in both the GT-AR and GT-CH strains, and 8 were unique to GT-AR and 9 were unique to GT-CH. All of these variations were annotated in metabolism pathway referred to KEGG database. Meanwhile, the deletion in slr0332 gene was detected in these two strains, which attributed to the non-motile phenotype of them and suggested that the insertion in spkA gene was not essential for non-motile phenotype. These resequencing data provide the genetic background information of these two strains and highlighted the microevolution over decades of laboratory cultivation.

This is a preview of subscription content, access via your institution.

References

  1. Allahverdiyeva Y, Ermakova M, Eisenhut M, Zhang P P, Richaud P, Hagemann M, Cournac L, Aro E M. 2011. Interplay between flavodiiron proteins and photorespiration in Synechocystis sp. PCC 6803. Journal of Biological Chemistry, 286 (27): 24 007–24 014.

    Google Scholar 

  2. Anderson S L, McIntosh L. 1991. Light–activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC6803: a blue–light–requiring process. J ournal of Bacteriology, 173 (9): 2 761–2 767.

    Article  Google Scholar 

  3. Bhaya D, Bianco N R, Bryant D, Grossman A. 2000. Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. PCC6803. Molecular Microbiology, 37 (4): 941–951.

    Article  Google Scholar 

  4. Bhaya D, Watanabe N, Ogawa T, Grossman A R. 1999. The role of an alternative sigma factor in motility and pilus formation in the cyanobacterium Synechocystis sp. strain PCC6803. Proceedings of the National Academy of Sciences of the United States of America, 96 (6): 3 188–3 193.

    Article  Google Scholar 

  5. Buchfink B, Xie C, Huson D H. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12 (1): 59–60.

    Article  Google Scholar 

  6. Chen K, Wallis J W, McLellan M D, Larson D E, Kalicki J M, Pohl C S, McGrath S D, Wendl M C, Zhang Q Y, Locke D P, Shi X Q, Fulton R S, Ley T J, Wilson R K, Ding L, Mardis, E R. 2009. BreakDancer: an algorithm for highresolution mapping of genomic structural variation. Nat ure Methods, 6 (9): 677–681.

    Article  Google Scholar 

  7. Dexter J, Fu P C. 2009. Metabolic engineering of cyanobacteria for ethanolproduction. Energy & Environmental Science., 2 (8): 857–864.

    Article  Google Scholar 

  8. Ding Q L, Chen G, Wang Y L, Wei D. 2015. Identification of specific variations in a non–motile strain of cyanobacterium Synechocystis sp. PCC 6803 originated from ATCC 27184 by whole genome resequencing. International Journal of Molecular Sciences, 16 (10): 24 081–24 093.

    Google Scholar 

  9. Dismukes G C, Carrieri D, Bennette N, Ananyev G M, Posewitz M C. 2008. Aquatic phototrophs: efficient alternatives to land–based crops for biofuels. Current Opinion in Biotechnology, 19 (3): 235–240.

    Article  Google Scholar 

  10. Gao Q Q, Wang W H, Zhao H, Lu X F. 2012. Effects of fatty acid activation on photosynthetic production of fatty acidbased biofuels in Synechocystis sp. PCC 6803. Biotechnology for Biofuels, 5: 17.

    Google Scholar 

  11. Hihara Y, Ikeuchi M. 1997. Mutation in a novel gene required for photomixotrophic growth leads to enhanced photoautotrophic growth of Synechocystis sp. PCC 6803. Photosynthesis Research, 53 (2–3): 243–252.

    Google Scholar 

  12. Ikeuchi M, Tabata S. 2001. Synechocystis sp. PCC 6803—a useful toolin the study of the genetics of cyanobacteria. Photosynthesis Research, 70 (1): 73–83.

    Google Scholar 

  13. Imamura S, Yoshihara S, Nakano S, Shiozaki N, Yamada A, Tanaka K, Takahashi H, Asayama M, Shirai M. 2003. Purification, characterization, and gene expression of all sigma factors of RNA polymerase in a cyanobacterium. J ournal of Molecular Biology, 325 (5): 857–872.

    Article  Google Scholar 

  14. Kaneko T, Nakamura Y, Sasamoto S, Watanabe A, Kohara M, Matsumoto M, Shimpo S, Yamada M, Tabata S. 2003. Structural analysis of four large plasmids harboring in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. DNA Res earch, 10 (5): 221–228.

    Google Scholar 

  15. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S. 1996. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein–coding regions. DNA Res earch, 3 (3): 109–136.

    Google Scholar 

  16. Kanesaki Y, Shiwa Y, Tajima N, Suzuki M, Watanabe S, Sato N, Ikeuchi M, Yoshikawa H. 2012. Identification of substrain–specific mutations by massively parallel wholegenome resequencing of Synechocystis sp. PCC 6803. DNA Res earch, 19 (1): 67–79.

    Google Scholar 

  17. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. 2009. Circos: an information aesthetic for comparative genomics. Genome Res earch, 19 (9): 1 639–1 645.

    Article  Google Scholar 

  18. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25 (14): 1 754–1 760.

    Article  Google Scholar 

  19. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25 (16): 2 078–2 079.

    Article  Google Scholar 

  20. McCormick A J, Bombelli P, Lea–Smith D J, Bradley R W, Scott A M. Fisher A C, Smith A G, Howe C J. 2013. Hydrogen production through oxygenic photosynthesis using the cyanobacterium Synechocystis sp. PCC 6803 in a bio–photoelectrolysis cell (BPE) system. Energ y & Environ mental Sci ence, 6 (9): 2 682–2 690.

    Google Scholar 

  21. Melis A. 2009. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci ence, 177 (4): 272–280.

    Article  Google Scholar 

  22. Morris J N, Crawford T S, Jeffs A, Stockwell P A, Eaton–Rye J J, Summerfield T C. 2014. Whole genome re–sequencing of two ‘wild–type’ strains of the model cyanobacterium Synechocystis sp. PCC 6803. New Zealand Journal of Botany, 52 (1): 36–47.

    Article  Google Scholar 

  23. Nakajima T, Kajihata S, Yoshikawa K, Matsuda F, Furusawa C, Hirasawa T, Shimizu H. 2014. Integrated metabolic flux and omics analysis of Synechocystis sp. PCC 6803 under mixotrophic and photoheterotrophic conditions. Plant and Cell Physiology, 55 (9): 1 605–1 612.

    Google Scholar 

  24. Rippka R, Deruelles J, Waterbury J B, Herdman M, Stanier R Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiolog y, 111 (1): 1–61.

    Google Scholar 

  25. Sambrook J, Russell D W. 2000. Molecular Cloning: A Laboratory Manual, 3 Vols. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  26. Stanier R Y, Kunisawa R, Mandel M, Cohen–Bazire G. 1971. Purification and properties of unicellular blue–green algae (order Chroococcales). Bacteriology Rev iews, 35 (2): 171–205.

    Google Scholar 

  27. Tajima N, Sato S, Maruyama F, Kaneko T, Sasaki N V, Kurokawa K, Ohta H, Kanesaki Y, Yoshikawa H, Tabata S, Ikeuchi M, Sato N. 2011. Genomic structure of the cyanobacterium Synechocystis sp. PCC 6803 strain GT–S. DNA Res earch, 18 (5): 393–399.

    Google Scholar 

  28. Takahashi H, Uchimiya H, Hihara Y. 2008. Difference in metabolite levels between photoautotrophic and photomixotrophic cultures of Synechocystis sp. PCC 6803 examined by capillary electrophoresis electrospray ionization mass spectrometry. Journal of Experimental Botany, 59 (11): 3 009–3 018.

    Google Scholar 

  29. Tan X M, Yao L, Gao Q Q, Wang W H, Qi F X, Lu X F. 2011. Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metabolic Engineering, 13 (2): 169–176.

    Article  Google Scholar 

  30. Trautmann D, Voß B, Wilde A, Al–Babili S, Hess W R. 2012. Microevolution in cyanobacteria: re–sequencing a motile substrain of Synechocystis sp. PCC 6803. DNA Research, 19 (6): 435–448.

    Google Scholar 

  31. Varman A M, Xiao Y, Pakrasi H B, Tang Y J. 2013. Metabolic engineering of Synechocystis sp. strain PCC 6803 for isobutanolproduction. Appl ied and Environ mental Microb iology, 79 (3): 908–914.

    Article  Google Scholar 

  32. Williams J G K. 1988. Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods in Enzymology, 167: 766–778.

    Article  Google Scholar 

  33. Xu W D, McFadden B A. 1997. Sequence analysis of plasmid pCC5.2 from cyanobacterium Synechocystis PCC 6803 that replicates by a rolling circle mechanism. Plasmid, 37 (2): 95–104.

    Article  Google Scholar 

  34. Yang X Y, McFadden B A. 1993. A small plasmid, pCA2.4, from the cyanobacterium Synechocystis sp. strain PCC 6803 encodes a rep protein and replicates by a rolling circle mechanism. J ournal of Bacteriology, 175 (13): 3 981–3 991.

    Article  Google Scholar 

  35. Yang X Y, McFadden B A. 1994. The complete DNA sequence and replication analysis of the plasmid pCB2.4 from the cyanobacterium Synechocystis PCC 6803. Plasmid, 31 (2): 131–137.

    Article  Google Scholar 

  36. Yoshihara S, Geng X X, Okamoto S, Yura K, Murata T, Go M, Ohmori M, Ikeuchi M. 2001. Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC6803. Plant and Cell Physiology., 42 (1): 63–73.

    Article  Google Scholar 

  37. Yoshikawa K, Hirasawa T, Ogawa K, Hidaka Y, Nakajima T, Furusawa C, Shimizu H. 2013. Integrated transcriptomic and metabolomic analysis of the central metabolism of Synechocystis sp. PCC 6803 under different trophic conditions. Biotechnology Journal, 8 (5): 571–580.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Gao Chen or Song Qin.

Additional information

Supported by the National Key Research and Development Program of China (No. 2016YFF0202304), the National Natural Science Foundation of China (No. 41376139), the Science and Technology Program of Yantai City (No. 2016JHZB007), and the Natural Science Foundation of Shandong Province, China (No. ZR2016CM48)

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Shi, W., Li, W. et al. Specific genetic variation in two non-motile substrains of the model cyanobacterium Synechocystis sp. PCC 6803. J. Ocean. Limnol. 36, 2322–2332 (2018). https://doi.org/10.1007/s00343-019-7291-1

Download citation

Keyword

  • Synechocystis sp. PCC 6803
  • genome resequencing
  • non-motile
  • genetic background