Skip to main content
Log in

Dynamic metabolite alterations of Portunus trituberculatus during larval development

  • Aquaculture and Fisheries
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

A mass mortality often occurs from molting to the megalopa stage during the larval development of the swimming crab Portunus trituberculatus. Larvae with insufficient nutrient accumulation during the zoeal stages are probably unable to develop into juvenile swimming crabs. However, the nutritional information such as the primary metabolites is scarce for P. trituberculatus larvae. The aim of this work is to obtain an insight into the metabolite traits of P. trituberculatus at early developmental stages. 1 H nuclear magnetic resonance spectroscopy coupled with multivariate data analysis was used to determine how the metabolite profiles shift during larval development in P. trituberculatus. Our results show that the trend of total metabolites exhibited a rise from zoea 1 to zoea 3, followed by a drop from zoea 4 to megalopa and recovery during the first juvenile stage. A large-scale depletion of total metabolites in the zoea 4 and megalopa stages suggests a deep depression of metabolic activity, which may be linked to the mass mortality from molting to the megalopa stage. These findings provided essential metabolic information about the larval development of P. trituberculatus and important clues for understanding the nutritional requirements of P. trituberculatus in early developmental stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrés M, Estévez A, Hontoria F, Rotllant G. 2010. Differential utilization of biochemical components during larval development of the spider crab Maja brachydactyla (Decapoda: Majidae). Mar ine Biology, 157 (10): 2 329–2 340.

    Article  Google Scholar 

  • Anger K. 1998. Patterns of growth and chemical composition in decapod crustacean larvae. Invertebr ate Reprod uction & Dev elopment, 33 (2–3): 159–176.

    Article  Google Scholar 

  • Anger K. 2001. The Biology of Decapod Crustacean Larvae. A.A. Balkem, Lisse.

    Google Scholar 

  • Aue W P, Bartholdi E, Ernst R R. 1976a. Two–dimensional spectroscopy. Application to nuclear magnetic resonance. The Journal of Chem ical Phys ics, 64 (5): 2 229–2 246.

    Google Scholar 

  • Aue W P, Karhan J, Ernst R R. 1976b. Homonuclear broad band decoupling and two–dimensional J–resolved NMRspectroscopy. The Journal of Chem ical Phys ics, 64 (10): 4 226–4 227.

    Article  Google Scholar 

  • Augusto A, Greene L J, Laure H J, McNamara J C. 2007. Adaptive shifts in osmoregulatory strategy and the invasion of freshwater by brachyuran crabs: evidence from Dilocarcinus pagei (trichodactylidae). Journal of Exp erimental Zoology, 307 A(12): 688–698.

    Google Scholar 

  • Avella M, Ducoudret O, Pisani D F, Poujeol P. 2009. Swellingactivated transport of taurine in cultured gill cells of sea bass: physiological adaptation and pavement cell plasticity. Am erican Journal of Physiology Regul atory, Integr ative and Comp arative Physiology, 296 (4): R1 149–R1 160.

    Google Scholar 

  • Boisen S. 2003. Ideal dietary amino acid profiles for pigs. In: D’Mello J P F ed. Amino Acids in Animal Nutrition. CABI, Edinburgh, United Kingdom. p.103–123.

    Book  Google Scholar 

  • Braunschweiler L, Ernst R R. 1983. Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. Journal of Magn etic Reson ance (1969), 53 (3): 521–528.

    Article  Google Scholar 

  • Brucet S, Boix D, López–Flores R, Badosa A, Quintana X D. 2005. Ontogenic changes of amino acid composition in planktonic crustacean species. Mar ine Biology, 148 (1): 131–139.

    Article  Google Scholar 

  • Chen S L, Wu X G, Cheng Y X, Wang C L, Zhu D F, Zhou B, Wang J F, Gong L J. 2007. Changes of proximate biochemical composition and energy source during embryonic development of swimming crab, Portunus trituberculatus. Journal of Fish ery Sciences of Chin a, 14 (2): 229–235. (in Chinese with English abstract)

    Google Scholar 

  • Cloarec O, Dumas M E, Trygg J, Craig A, Barton R H, Lindon J C, Nicholson J K, Holmes E. 2005. Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1 H NMR spectroscopic metabonomic studies. Anal ytical Chem istry, 77 (2): 517–526.

    Article  Google Scholar 

  • Committee on the Nutrient Requirements of Fish and Shrimp, Board on Agriculture and Natural Resources, National Research Council. 2011. Nutrient Requirements of Fish and Shrimp. National Academies Press, Washington, DC. p.57–92.

    Google Scholar 

  • Conlan J A, Jones P L, Turchini G M, Hall M R, Francis D S. 2014. Changes in the nutritional composition of captive early–mid stage Panulirus ornatus phyllosoma over ecdysis and larval development. Aquaculture, 434: 159–170.

    Article  Google Scholar 

  • Dan S, Kaneko T, Takeshima S, Ashidate M, Hamasaki K. 2013. Variations in larval morphology and their relationships to survival during mass seed production by the swimming crab, Portunus trituberculatus (Brachyura, Portunidae). Aquaculture, 414–415: 109–118.

    Article  Google Scholar 

  • Eriksson L, Trygg J, Wold S. 2008. CV–ANOVA for significance testing of PLS and OPLS ® models. Journal Chemometr ics, 22 (11–12): 594–600.

    Article  Google Scholar 

  • Fan T W M. 1996. Metabolite profiling by one–and twodimensional NMR analysis of complex mixtures. Progress in Nuclear Magnetic Resonance Spectroscopy, 28 (2): 161–219.

    Article  Google Scholar 

  • Hammer K M, Pedersen S A, Størseth T R. 2012. Elevated seawater levels of CO 2 change the metabolic fingerprint of tissues and hemolymph from the green shore crab Carcinus maenas. Comp arative Biochem istry and Physiology Part D: Genomics and Proteomics, 7 (3): 292–302.

    Google Scholar 

  • Hao G J, Lin F, Mu C K, Li R H, Yao J Y, Yuan X M, Pan X Y, Shen J Y, Wang C L. 2015. SNP E4–20. C/T in C–type lectin of Portunus trituberculatus is association with susceptibility/resistance to Vibrio alginolyticus challenge. Aquaculture, 442: 125–131.

    Google Scholar 

  • Haond C, Bonnal L, Sandeaux R, Charmantier G, Trilles J P. 1999. Ontogeny of intracellular isosmotic regulation in the European lobster Homarus gammarus (L.). Physiological and Biochem ical Zoology, 72 (5): 534–544.

    Article  Google Scholar 

  • Hird F J R. 1986. The importance of arginine in evolution. Comp arative Biochem istry and Physiology Part B: Comparative Biochemistry, 85 (2): 285–288.

    Article  Google Scholar 

  • Holme M H, Zeng C S, Southgate P C. 2009. A review of recent progress toward development of a formulated microbound diet for mud crab, Scylla serrata, larvae and their nutritional requirements. Aquaculture, 286 (3–4): 164–175.

    Article  Google Scholar 

  • Hu S, Wang J, Han T, Li X, Jiang Y, Wang C. 2016. Effects of dietary DHA/EPA ratios on growth performance, survival and fatty acid composition of juvenile swimming crab ( Portunus trituberculatus ). Aquaculture Research, 48 (3): 1 291–1 301.

    Article  Google Scholar 

  • Ikeda T, Smith G, McKinnon A D, Hall M. 2011. Metabolism and chemical composition of phyllosoma larvae, with special reference to the tropical rock lobster Panulirus ornatus (Decapoda; Palinuridae). Journal of Experimental Marine Biology and Ecology, 405 (1–2): 80–86.

    Article  Google Scholar 

  • Jin M, Wang M Q, Huo Y W, Huang W W, Mai K S, Zhou Q C. 2015. Dietary lysine requirement of juvenile swimming crab, Portunus trituberculatus. Aquaculture, 448: 1–7.

    Article  Google Scholar 

  • Jin M, Zhou Q C, Wang M Q, Huo Y W, Huang W W, Mai K S. 2016. Dietary arginine requirement of juvenile swimming crab, Portunus trituberculatus. Aquaculture Nutr ition, 22 (6): 1 174–1 184.

    Article  Google Scholar 

  • Kean J C, Castell J D, Boghen A G, D’Abramo L R, Conklin D E. 1985. A re–evaluation of the lecitihin and cholesterolrequirements of juvenile lobster ( Homarus americanus ) using crab protein–based diets. Aquaculture, 47 (2–3): 143–149.

    Article  Google Scholar 

  • Lim B K, Hirayama K. 1991. Growth and elemental composition (C,N,P) during larval developmental stages of mass–cultured swimming crab Portunus trituberculatus. Marine Ecology Progress Series, 78: 131–137.

    Article  Google Scholar 

  • Mazzarelli C C M, Santos M R, Amorim R V, Augusto A. 2015. Effect of salinity on the metabolism and osmoregulation of selected ontogenetic stages of an amazon population of Macrobrachium amazonicum shrimp (Decapoda, Palaemonidae). Braz ilian Journal of Biology, 75 (2): 372–379.

    Article  Google Scholar 

  • Millamena O M, Quinitio E. 2000. The effects of diets on reproductive performance of eyestalk ablated and intact mud crab Scylla serrata. Aquaculture, 181 (1–2): 81–90.

    Article  Google Scholar 

  • Minagawa M, Chiu J R, Murano M. 1993. Developmental changes in body weight and elemental composition of laboratory–reared larvae of the red frog crab, Ranina ranina (Decapoda: Brachyura). Marine Biology, 116 (3): 399–406.

    Article  Google Scholar 

  • Morioka Y, Kitajima C, Hayashida G. 1988. Oxygen consumption, growth and calculated food requirement of the swimming crab Protunus trituberculatus in its early developmental stage. Nippon Suisan Gakkaishi, 54 (7): 1 137–1 141.

    Article  Google Scholar 

  • Peñaflorida V D. 2004. Amino acid profiles in the midgut, ovary, developing eggs and zoea of the mud crab, Scylla serrata. Isr aeli Journal of Aquacult ure–Bamidgeh, 56 (2): 111–123.

    Google Scholar 

  • Ponat A, Adelung D. 1983. Studies to establish an optimal diet for Carcinus maenas: 3. Vitamin and quantitative lipid requirements. Mar ine Biology, 74 (3): 275–279.

    Google Scholar 

  • Preston R L. 1993. Transport of amino acids by marine invertebrates. Journal of Experimental Zoology, 265 (4): 410–421.

    Article  Google Scholar 

  • Sheen S S, Wu S W. 1999. The effects of dietary lipid levels on the growth response of juvenile mud crab Scylla serrata. Aquaculture, 175 (1–2): 143–153.

    Article  Google Scholar 

  • Sheen S S. 2000. Dietary cholesterolrequirement of juvenile mud crab Scylla serrata. Aquacult ure, 189 (3–4): 277–285.

    Article  Google Scholar 

  • Sun Y M, Yan Y, Sun J J. 1984. The larval development of Portunus trituberculatus. Journal of Fish eries of Chin a, 8 (3): 219–226. (in Chinese with English abstract)

    Google Scholar 

  • Suprayudi M A, Takeuchi T, Hamasaki K. 2004. Essential fatty acids for larval mud crab Scylla serrata: implications of lack of the ability to bioconvert C18 unsaturated fatty acids to highly unsaturated fatty acids. Aquacult ure, 231 (1–4): 403–416.

    Article  Google Scholar 

  • Trygg J, Holmes E, Lundstedt T. 2007. Chemometrics in metabonomics. Journal of Proteome Res earch, 6 (2): 469–479.

    Article  Google Scholar 

  • Trygg J, Wold S. 2002. Orthogonal projections to latent structures (O–PLS). Journal of Chemometr ics, 16 (3): 119–128.

    Article  Google Scholar 

  • Upmeier B, Gross W, Köster S, Barz W. 1988. Purification and properties of S–adenosyl–L–methionine:Nicotinic acid–N–methyltransferase from cell suspension cultures of Glycine max L. Arch ives of Biochem istry and Biophys ics, 262 (2): 445–454.

    Article  Google Scholar 

  • Van Den Berg R A, Hoefsloot H C J, Westerhuis J A, Smilde A K, Van Der Werf M J. 2006. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics, 7: 142.

    Article  Google Scholar 

  • Wu X G, Zeng C S, Southgate P C. 2014. Ontogenetic patterns of growth and lipid composition changes of blue swimmer crab larvae: insights into larval biology and lipid nutrition. Mar ine and Freshwater Res earch, 65 (3): 228–243.

    Article  Google Scholar 

  • Xiao C N, Hao F H, Qin X R, Wang Y L, Tang H R. 2009. An optimized buffer system for NMR–based urinary metabonomics with effective pH control, chemical shift consistency and dilution minimization. Analyst, 134 (5): 916–925.

    Article  Google Scholar 

  • Xie Z M, Liu H J, Feng L. 2002. Breeding of swimming crab, Portunus trituberculatus. In: Xie Z M ed. Hatchery Technology of Marine Economic Crabs. China Agriculture Press, Beijing, China. p.1–304. (in Chinese)

    Google Scholar 

  • Yancey P H, Blake W R, Conley J. 2002. Unusual organic osmolytes in deep–sea animals: adaptations to hydrostatic pressure and other perturbants. Comp arative Biochem istry and Physiology Part A: Molecular & Integr ative Physiology, 133 (3): 667–676.

    Article  Google Scholar 

  • Yancey P H. 2005. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. Journal of Exp erimental Biology, 208 (15): 2 819–2 830.

    Article  Google Scholar 

  • Ye Y F, An Y P, Li R H, Mu C K, Wang C L. 2014. Strategy of metabolic phenotype modulation in Portunus trituberculatus exposed to low salinity. Journal of Agric ultural and Food Chem istry, 62 (15): 3 496–3 503.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yangfang Ye or Changkao Mu.

Additional information

Supported by the National Natural Science Foundation of China (No. 41673076), the Major Agriculture Program of Ningbo (No. 2017C110007), China Agriculture Research System-CARS48, and the K. C. Wong Magna Fund in Ningbo University

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Zeng, T., Li, R. et al. Dynamic metabolite alterations of Portunus trituberculatus during larval development. J. Ocean. Limnol. 37, 361–372 (2019). https://doi.org/10.1007/s00343-019-7268-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-7268-0

Keyword

Navigation