Comparative study of epiphytic algal communities on Typha latifolia L. and Phragmites australis (Cav.) Trin. ex Steud in the shallow Gala Lake (European Part of Turkey)

Abstract

The aim of this study was to determine the species composition, biodiversity and, relative abundance of epiphytic algae and their relationship with environmental variables on Typha latifolia and Phragmites australis at Lake Gala (National Park). Epiphytic algae were gathered monthly by collecting aquatic plants between March 2014 and November 2014. In the epiphytic flora were a total of 133 taxa were identified, 107 taxa were identified on T. latifolia and 96 were discovered on P. australis. While the mean species richness, species diversity and evenness values of the algae identified on T. latifolia were 46, 1.85 and 0.51 respectively, these values were respectively 43, 1.51 and 0.43 on P. australis. While diatoms were generally dominant, other dominant groups in the epiphytic flora included green algae and blue-green algae. The algae that had the highest relative biovolume on T. latifolia were Spirogyra affinis, Oscillatoria sancta and Gomphonema acuminatum, while the algae that had the highest relative biovolume on P. australis were Epithemia adnata, Oscillatoria sancta and Rhopalodia gibba. Results show that species composition of epiphytic algae was different, but diversity values were similar on all the macrophytes. The hydrological pulse is one of the most important factors determining the physical and chemical environment of the epiphytic algal community. It was found that some environmental factors were highly effective on community distribution in the epiphyton. Additionally, it was observed that some epiphytic algae species had a substrate preference between T. latifolia and P. australis.

This is a preview of subscription content, access via your institution.

References

  1. Ács É, Kiss K T, Szabó K, Makk J. 2000. Short-term colonization sequence of periphyton on glass slides in a large river(River Danube, near Budapest). Algological Studies, 100: 135–156.

    Google Scholar 

  2. Addinsoft, Xlstat. 2015. Data analysis and statistics with MS Excel ®. Addinsoft, NY, USA. xlstat available at https://doi.org/www.xlstat.com/en/home.

    Google Scholar 

  3. Albay M, Akçaalan R. 2003. Comparative study of periphyton colonisation on common reed( Phragmites australis ) and artificial substrate in a shallow lake, Manyas, Turkey. Hydrobiologia, 506(1–3): 531–540, https://doi.org/10.1023/B:HYDR.0000008606.69572.f6.

    Article  Google Scholar 

  4. Albay M, Akçaalan R. 2008. Effects of water quality and hydrologic drivers on periphyton colonization on Sparganium erectum ın two turkish lakes with different mixing regimes. Environmental Monitoring and Assessment, 146(1–3): 171–181, https://doi.org/10.1007/s10661-007-0069-5.

    Article  Google Scholar 

  5. Algarte V M, Siqueira N S, Murakami E A, Rodrigues L. 2009. Effects of hydrological regime and connectivity on the interannual variation in taxonomic similarity of periphytic algae. Braz. J. Biol., 62(2S): 609–616, https://doi.org/10.1590/S1519-69842009000300015.

    Google Scholar 

  6. Anonymous. 2012. İpsala Vision Plan. Trakya Development Agency, 2012.(ın Turkish) APHA, AWWA, WEF. 2012. 10300 Periphyton. Standard Methods for the Examination of Water and Wastewater. 22 nd edn. American Public Health Association, Washington, D.C.

    Google Scholar 

  7. Battarbee R W, Jones V J, Flower R J, Cameron N G, Bennion H, Carvalho L, Juggins S. 2001. Diatoms. In: Smol J P, Birks H J, Last W M eds. Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous İndicators. Springer, The Netherlands. p.155–202.

  8. Bennion H, Kelly M G, Juggins S, Yallop M L, Burgess A, Jamieson J, Krokowski J. 2014. Assessment of ecological status in UK lakes using benthic diatoms. Freshwater Science, 33(2): 639–654, https://doi.org/10.1086/675447.

    Article  Google Scholar 

  9. Bicudo C E M, Menezes M. 2006. Gêneros de algas de águas continentais do Brasil.(Chave de identificação e descrições). 2 nd edn. Rıma, São Carlos. p.1–489.

    Google Scholar 

  10. Biolo S, Rodrigues L. 2013. Comparison of the structure of the periphytic community in distinct substrates from a neotropical floodplain. International Research Journal of Plant Science, 4(3): 64–75.

    Google Scholar 

  11. Biswas K, Calder C C. 1984. Hand-Book of Common Water and Marsh Plants of India and Burma. p.1–216.

    Google Scholar 

  12. Blanco S, Cejudo-Figueiras C, Álvarez-Blanco I, van Donk E, Gross E M, Hansson L A, Irvine K, Jeppesen E, Kairessalo T, Moss B, Nõges T, Bécares E. 2014. Epiphytic diatoms along environmental gradients in western european shallow lakes. CLEAN-Soil, Air, Water, 42(3): 229–235, https://doi.org/10.1002/clen.201200630.

    Article  Google Scholar 

  13. Çamur-Elipek B, Arslan N, Kırgız T, Öterler B, Güher H, Özkan N. 2010.Analysis of benthic macroinvertebrates in relation to environmental variables of Lake Gala, a National Park of Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 10(1): 235–243, https://doi.org/10.4194/trjfas.2010.0212.

    Google Scholar 

  14. Cano M G, Casco M A, Claps M C. 2012. Effect of environmental variables on epiphyton in a pampean lake with stable turbid- and clear-water states. Aquatic Biology, 15(1): 47–59, https://doi.org/10.3354/ab00409.

    Article  Google Scholar 

  15. Cantonati M, Angeli N, Bertuzzi E, Spitale D, Lange-Bertalot H. 2012. Diatoms in springs of the Alps: spring types, environmental determinants, and substratum. Freshwater Science, 31(2): 499–524, https://doi.org/10.1899/11-065.1.

    Article  Google Scholar 

  16. Cattaneo A, Galanti G, Gentinetta S, Romo S. 1998. Epiphytic algae and macro invertebrates on submerged and floatingleaved macrophytes in an Italian lake. Freshwater Biology, 39(4): 725–740, https://doi.org/10.1046/j.1365-2427.1998.00325.x.

    Article  Google Scholar 

  17. Chung M H, Lee K S. 2008. Species composition of the epiphytic diatoms on the leaf tissues of three Zostera species distributed on the southern coast of Korea. Algae, 23(1): 75–81, https://doi.org/10.4490/ALGAE.2008.23.1.075.

    Article  Google Scholar 

  18. Coops H, Hosper S H. 2002. Water-level management as a tool for the restoration of shallow lakes in the Netherlands. Lake and Reservoir Management, 18(4): 293–298, https://doi.org/10.1080/07438140209353935.

    Article  Google Scholar 

  19. Dibble E D, Thomaz S M, Padial A A. 2006. Spatial complexity measured at a multi-scale in three aquatic plant species. Journal of Freshwater Ec ology, 21(2): 239–247, https://doi.org/10.1080/02705060.2006.9664992.

    Article  Google Scholar 

  20. doa Santos T R, Ferragut C, de Mattos Bicudo C E. 2013. Does macrophyte architecture influence periphyton? Relationships among Utricularia foliosa, periphyton assemblage structure and its nutrient(C, N, P) status. Hydrobiologia, 714(1): 71–83, https://doi.org/10.1007/s10750-013-1531-8.

    Article  Google Scholar 

  21. Flynn N J, Snook D L, Wade A J, Jarvie H P. 2002. Macrophyte and periphyton dynamics in a UK Cretaceous chalk stream: the River Kennet, a tributary of the Thames. The Science of the Total Environment, 282–283: 143–157, https://doi.org/10.1016/S0048-9697(01)00949-4.

    Article  Google Scholar 

  22. Gaiser E E, Scinto L J, Richards J H, Jayachandran K, Chiders D L, Trexler J C, Jones R D. 2004. Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland. Water Research, 38(3): 507–516, https://doi.org/10.1016/j.watres.2003.10.020.

    Article  Google Scholar 

  23. Goldsborough L G, Robinson G C. 1996. Patterns in wetlands. In: Stevenson R J, Bothwell M L, Lowe R L eds. Algal Ecology: Freshwater Benthic Ecosystems. Academic, London. p.78–117.

  24. Graham L E, Graham J M, Wilcox L W. 2009. Algae. 2 nd edn. Prentice-Hall, Inc., Upper Saddle River, New Jersey. p.1–616.

    Google Scholar 

  25. Guariento R D, Caliman A, Esteves F A, Enrich-Prast A, Bozelli R L, Farjalla V F. 2007. Substrate-mediated direct and indirect effects on periphytic biomass and nutrient content in a tropical coastal lagoon, Rio de Janeiro, Brazil. Acta Limnologica Brasiliensia, 19: 331–340.

    Google Scholar 

  26. Guiry M D, Guiry G M. 2017. AlgaeBase. World-wide Electronic Publication, National University of Ireland, Galway. http://www.algaebase.org.

    Google Scholar 

  27. Hillebrand H, Dürselen C D, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35(2): 403–424, https://doi.org/10.1046/j.1529-8817.1999.3520403.x.

    Article  Google Scholar 

  28. Hindák F. 2008. Colour Atlas of Cyanophytes. VEDA, Bratislava. p.1–253.

    Google Scholar 

  29. IBM Corp, 2013. IBM SPSS Statistics for Windows(Version 22.0). IBM Corp, Armonk, NY.

    Google Scholar 

  30. King L, Clarke G, Bennion H, Kelly M, Yallop M. 2006. Recommendations for sampling littoral diatoms in lakes for ecological status assessments. Journal of Applied Phycology, 18: 15–25, https://doi.org/10.1007/s10811-005-9009-3.

    Article  Google Scholar 

  31. Kitner M, Poulíčková A, Hašler P. 2005. Algal colonization process in fishponds of different trophic status. Algological Studies, 115: 115–127, https://doi.org/10.1127/1864-1318/2005/0115-0115.

    Article  Google Scholar 

  32. Komarek J, Anagnostidis K. 2005. Cyanoprokariota. 2. Teil: Oscillatoriales. In: Büdel B, Gärtner G, Krienitz L, Schagerl M eds. Süßwasserflora von Mitteleuropa. Elsevier, Heidelberg. p.1–759.

    Google Scholar 

  33. Komarek J, Fott B. 1983. Die binnnengewässer. Band 26, Das phytoplankton des süßwassers. 7 Teil, 1. Hälfte, Chlorophyceae(Grünalgen), Ordnung: Chlorococcales. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, p.1–1 044.

    Google Scholar 

  34. Krammer K, Lange-Bertalot H. 1986–2004. Bacillariophyceae. 1–4 Teil. Süsswasserflora von Mitteleuropa. In: Ettl H, GerloffJ, Heynig H, Mollenhauer D eds. Fischer-Verlag, Stuttgart, Germany.

  35. Kristiansen J, Preisig H R. 2011. Phylum Chrysophyta(Golden Algae). In: John D M, Whitton B A, Brook A J eds. The Freshwater Algal Flora of the British Isles: An İdentification Guide to Freshwater and Terrestrial Algae. 2 nd edn. Cambridge University Press, Cambridge. p.1–878.

  36. Letáková M, Cantonati M, Hašler P, Nicola A, Poulíčková A. 2016. Substrate specificity and fine-scale distribution of epiphytic diatoms in a shallow tarn in the Brenta Dolomites(south-eastern Alps). Plant Ecology and Evolution, 149(2): 144–156, https://doi.org/10.5091/plecevo.2016.1206.

    Article  Google Scholar 

  37. Messyasz B, Kuczyńska-Kippen N, Nagengast B. 2009. The epiphytic communities of various ecological types of aquatic vegetation of five pastoral ponds. Biologia, 64(1): 88–96, https://doi.org/10.2478/s11756-009-0006-x.

    Article  Google Scholar 

  38. Michelutti N A, Holtham J, Douglas M S V, Smol J P. 2003. Periphytic diatom ssemblages from ultraoligotrophic and UV transparent lakes and ponds on Victoria Island and comparisons with other diatom surveys in the Canadian Arctic. Journal of Phycology, 39(3): 465–480, https://doi.org/10.1046/j.1529-8817.2003.02153.x.

    Article  Google Scholar 

  39. Neif É M, de Lima Behrend R D, Rodriguez L. 2013. Seasonal dynamics of the structure of epiphytic algal community on different substrates from a Neotropical floodplain. Brazilian Journal of Botany, 36(3): 169–177, https://doi.org/10.1007/s40415-013-0021-6.

    Article  Google Scholar 

  40. Nivolianitou Z, Synodinou B. 2012. Environmental management of big riverine floods: the case of evros river in greece. In: Advances in Environmental Science and Sustainability. WSEAS Press, Sliema, Malta. p.15–20.

    Google Scholar 

  41. Nõges N, Luup H, Feldmann T. 2010.Primary production of aquatic macrophytes and their epiphytes in two shallow lakes(Peipsi and Võrtsjärv) in Estonia. Aquatic Ecology, 44(1): 83–92, https://doi.org/10.1007/s10452-009-9249-4.

    Article  Google Scholar 

  42. Nusch E A. 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Arch iv f ü r Hydrobiol ogie, 14: 14–36.

    Google Scholar 

  43. Öterler B, Albay M, Çamur-Elipek B, Güher H, Kırgız T. 2015. Spatial and temporal distribution of phytoplankton in Lake Gala(Edirne/TURKEY). Trakya University Journal of Natural Sciences, 16(2): 71–80.

    Google Scholar 

  44. Padial A A, Thomaz S M, Agostinho A A. 2009. Effects of structural heterogeneity provided by the floating macrophyte Eichhornia azurea on the predation efficiency and habitat use of the small Neotropical fish Moenkhausia sanctaefilomenae. Hydrobiologia, 624(1): 161–170, https://doi.org/10.1007/s10750-008-9690-8.

    Article  Google Scholar 

  45. Pelicice F M, Thomaz S M, Agostinho A A. 2008. Simple relationships to predict attributes of fish assemblages in patches of submerged macrophytes. Neotropical Ichthyology, 6(4): 543–550, https://doi.org/10.1590/S1679-62252008000400001.

    Article  Google Scholar 

  46. Pestalozzi H G. 1982. Das phytoplankton des susswasser Teil: 8 E. Schweizerbart’sche Verlagsbuchhandlund(Nagele U. Obermiller). Stuttgart. p.1–539.

    Google Scholar 

  47. Prescott G W. 1973. Algae of Western Great Lake Area. Fifth printing. William C. Brown Publishers, Dubaque. p.1–977.

    Google Scholar 

  48. Ros J. 1979. Práticas de ecologia. Editora Omega, Barcelona. p.181.

    Google Scholar 

  49. Schallenberg M, Burns C W. 2004. Effects of sediment resuspension on phytoplankton production: teasing apart the influences of light, nutrients and algal entrainment. Freshwat er Biology, 49(2): 143–159, https://doi.org/10.1046/j.1365-2426.2003.01172.x.

    Article  Google Scholar 

  50. Schippers P, van de Weerd H, de Klein J, de Jong B, Scheffer M. 2006. Impacts of agricultural phosphorus use in catchments on shallow lake water quality: about buffers, time delays and equilibria. Sci. Total Environ., 369(1–3): 280–294, https://doi.org/10.1016/j.scitotenv.2006.04.028.

    Article  Google Scholar 

  51. Steinman A, Abdimalik M, Ogdahl M E, Oudsema M. 2016. Understanding planktonic vs. benthic algal response to manipulation of nutrients and light in a eutrophic lake. Lake and Reservoir Management, 32(4): 402–409, https://doi.org/10.1080/10402381.2016.1235065.

    Article  Google Scholar 

  52. Stevenson R J, Singer R, Roberts D A, Boylen C W. 1985. Patterns of epipelic algal abundance with depth, trophic status, and acidity in poorly buffered New Hamshire lakes. Canadian Journal of Fisheries and Aquatic Sciences, 42(9): 1 501–1 512, https://doi.org/10.1139/f85-188.

    Article  Google Scholar 

  53. Sun J, Liu D Y. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research, 25(11): 1 331–1 346, https://doi.org/10.1093/plankt/fbg096.

    Article  Google Scholar 

  54. Tokatli C. 2014. Drinking water quality of a rice land in Turkey by statistical and GIS perspectives. Polish Journal of Environmental Studies, 23(6): 2 247–2 258, https://doi.org/10.15244/pjoes/26967.

    Google Scholar 

  55. Tokatli C. 2015. Assessment of water quality in the Meriç River as an ecosystem element in Turkey’s Thrace region. Polish Journal of Environmental Studies, 24(5): 2 205–2 211, https://doi.org/10.15244/pjoes/58780.

    Article  Google Scholar 

  56. Tunca H, Ongun-Sevindik T, Bal D N, Arabacı S. 2014. Community structure of epiphytic algae on three different macrophytes at Acarlar floodplain forest(Northern Turkey). Chinese Journal of Oceanology and Limnology, 32(4): 845–857, https://doi.org/10.1007/s00343-014-3205-4.

    Article  Google Scholar 

  57. Utermöhl H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt. Int. Ver. Theor. Angew. Limnol., 9: 1–38.

    Google Scholar 

  58. Vadeboncoeur Y, Kalff J, Christoffersen K, Jeppesen E. 2006. Substratum as a driver of variation in periphyton chlorophyll and productivity in lakes. Journal of the North American Benthological Society, 25(2): 379–392, https://doi.org/10.1899/0887-3593(2006)25[379:SAADOV]2.0.CO;2.

    Article  Google Scholar 

  59. Vadeboncoeur Y, Peterson G, Vander Zanden M J, Kalff J. 2008. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light. Ecology, 89(9): 2 542–2 552, https://doi.org/10.1890/07-1058.1.

    Article  Google Scholar 

  60. Vadeboncoeur Y, Steinman A D. 2002. Periphyton function in lake ecosystems. The Scientific World Journal, 2: 1 449–1 468, https://doi.org/10.1100/tsw.2002.294.

    Article  Google Scholar 

  61. Vadeboncoeur Y, Devlin S P, McIntyre P B, Vander Zanden M J. 2014. Is there light after depth? Distribution of periphyton chlorophyll and productivity in lake littoral zones. Freshwater Science, 33(2): 524–536, https://doi.org/10.1086/676315.

    Article  Google Scholar 

  62. Vinebrooke R D, Leavitt P R. 1999. Phytobenthos and phytoplankton as potential indicators of climate change in mountain lakes and ponds: a HPLC-based pigment approach. J. North Am. Benth. Soc., 18(1): 15–33, https://doi.org/10.2307/1468006.

    Article  Google Scholar 

  63. Vis C, Hudon C, Carignan R, Gagnon P. 2007. Spatial analysis of production by macrophytes, phytoplankton and epiphyton in a large river system under different waterlevel conditions. Ecosystems, 10(2): 293–310, https://doi.org/10.1007/s10021-007-9021-3.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Öterler Burak.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burak, Ö. Comparative study of epiphytic algal communities on Typha latifolia L. and Phragmites australis (Cav.) Trin. ex Steud in the shallow Gala Lake (European Part of Turkey). J. Ocean. Limnol. 36, 1615–1628 (2018). https://doi.org/10.1007/s00343-018-7128-3

Download citation

Keyword

  • community structure
  • epiphytic algae
  • shallow lake
  • Typha latifolia
  • Phragmites australis