Disruption of bacterial balance in the gut of Portunus trituberculatus induced by Vibrio alginolyticus infection

  • Mengjie Xia (夏梦洁)
  • Feng Pei (裴峰)
  • Changkao Mu (母昌考)
  • Yangfang Ye (叶央芳)
  • Chunlin Wang (王春琳)


Gut microbiota impacts the health of crustaceans. Vibrio alginolyticus is a main causative pathogen that induces the vibriosis in farmed swimming crabs, Portunus trituberculatus. However, it remains unknown whether gut bacteria perform functions during the progression of vibriosis. In this study, 16S rRNA gene amplicon sequencing was used to investigate temporal alteration of gut bacterial community in swimming crabs in response to 72-h V. alginolyticus challenge. Our results show that V. alginolyticus infection resulted in dynamic changes of bacterial community composition in swimming crabs. Such changes were highlighted by the overwhelming overabundance of Vibrio and a signifi cant fluctuation in the gut bacteria including the bacteria with high relative abundance and especially those with low relative abundance. These findings reveal that crab vibriosis gradually develops with the infection time of V. alginolyticus and tightly relates to the dysbiosis of gut bacterial community structure. This work contributes to our appreciation of the importance of the balance of gut bacterial community structure in maintaining the health of crustaceans.


Portunus trituberculatus Vibrio alginolyticus gut bacterial community composition 16S rRNA gene amplicon sequencing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bi K R, Zhang X J, Yan B L, Gao H, Gao X J, Sun J J. 2016. Isolation and molecular identification of Vibrio natriegens from diseased Portunus trituberculatus in China. Journal of the World Aquacult ure Society, 47(6): 854–861.CrossRefGoogle Scholar
  2. Brestoff J R, Artis D. 2013. Commensal bacteria at the interface of host metabolism and the immune system. Nature Immunology, 14 (7): 676–684.CrossRefGoogle Scholar
  3. Caporaso J G, Bittinger K, Bushman F D, DeSantis T Z, Andersen G L, Knight R. 2010b. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics, 26 (2): 266–267.CrossRefGoogle Scholar
  4. Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010a. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7 (5): 335–336.CrossRefGoogle Scholar
  5. Caporaso J G, Lauber C L, Walters W A, Berg-Lyons D, Huntley J, Fierer N, Owens S M, Betley J, Fraser L, Bauer M, Gormley N, Gilbert J A, Smith G, Knight R. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal, 6 (8): 1621–1624.CrossRefGoogle Scholar
  6. Chen X B, Di P P, Wang H M, Li B L, Pan Y J, Yan S L, Wang Y J. 2015. Bacterial community associated with the intestinal tract of Chinese mitten crab (Eriocheir sinensis) farmed in Lake Tai, China. PLoS One, 10 (4): e0123990.CrossRefGoogle Scholar
  7. Cheung M K, Yip H Y, Nong W, Law P T W, Chu K H, Kwan H S, Hui J H L. 2015. Rapid change of microbiota diversity in the gut but not the hepatopancreas during gonadal development of the new shrimp model Neocaridina denticulata. Marine Biotechnology, 17 (6): 811–819.CrossRefGoogle Scholar
  8. Cui Z X, Liu Y, Luan W S, Li Q Q, Wu D H, Wang S Y. 2010. Molecular cloning and characterization of a heat shock protein 70 gene in swimming crab ( Portunus trituberculatus ). Fish & Shellfish Immunology, 28 (1): 56–64.CrossRefGoogle Scholar
  9. De Schryver P, Vadstein O. 2014. Ecological theory as a foundation to control pathogenic invasion in aquaculture. The ISME Journal, 8: 2360–2368.CrossRefGoogle Scholar
  10. Dicksved J, Halfvarson J, Rosenquist M, Järnerot G, Tysk C, Apajalahti J, Engstrand L, Jansson J K. 2008. Molecular analysis of the gut microbiota of identical twins with Crohn’s disease. The ISME Journal, 2: 716–727.CrossRefGoogle Scholar
  11. Edgar R C, Haas B J, Clemente J C, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27 (16): 2194–2200.CrossRefGoogle Scholar
  12. Gauthier M J. 1976. Alteromonas rubra sp. nov., a new marine antibiotic-producing bacterium. Int ernational Journal of Systematic Bacteriol ogy, 26: 459–466.Google Scholar
  13. Kau A L, Ahern P P, Griffin N W, Goodman A L, Gordon J I. 2011. Human nutrition, the gut microbiome and the immune system. Nature, 474 (7351): 327–336.CrossRefGoogle Scholar
  14. Li M, Li C W, Wang J F, Song S Q. 2015. Molecular characterization and expression of a novel Toll gene from the swimming crab Portunus trituberculatus. Molecular Immunology, 67 (2 Pt B): 388–397.CrossRefGoogle Scholar
  15. Liu C H, Cheng W, Hsu J P, Chen J C. 2004. Vibrio alginolyticus infection in the white shrimp Litopenaeus vannamei confirmed by polymerase chain reaction and 16S rDNA sequencing. Diseases of Aquatic Organisms, 61 (1-2): 169–174.CrossRefGoogle Scholar
  16. Liu Q, Li H Y, Wang Q, Liu P, Dai F Y, Li J. 2007. Identification and phylogenetic analysis of a strain of Vibrio alginolyticus, a pathogen in Portunus trituberculatus with toothpaste disease. Marine Freshwater Research, 28(4): 9–13. (in Chinese with English abstract)Google Scholar
  17. Magoc T, Salzberg S L. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27 (21): 2957–2963.CrossRefGoogle Scholar
  18. Ohwada K, Tabor P S, Colwell R R, 1980. Species composition and barotolerance of gut microflora of deep-sea benthic macrofauna collected at various depths in the Atlantic ocean. Applied and Environmental Microbiology, 40 (4): 746–755.Google Scholar
  19. Olmos J, Ochoa L, Paniagua-Michel J, Contreras R. 2011. Functional feed assessment on Litopenaeus vannamei using 100% fish meal replacement by soybean meal, high levels of complex carbohydrates and Bacillus probiotic strains. Marine Drugs, 9 (6): 1119–1132.CrossRefGoogle Scholar
  20. Qin J J, Li R Q, Raes J, Arumugam M, Burgdorf K S, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende D R, Li J H, Xu J M, Li S C, Li D F, Cao J J, Wang B, Liang H Q, Zheng H S, Xie Y L, Tap J, Lepage P, Bertalan M, Batto J M, Hansen T, Le Paslier D, Linneberg A, Nielsen H B, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H M, Yu C, Li S T, Jian M, Zhou Y, Li Y R, Zhang X Q, Li S G, Qin N, Yang H M, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, MetaHIT Consortium, Bork P, Ehrlich S D, Wang J. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464 (7285): 59–65.CrossRefGoogle Scholar
  21. Qin N, Yang F L, Li A, Prifti E, Chen Y F, Shao L, Guo J, Le Chatelier E, Yao J, Wu L J, Zhou J W, Ni S J, Liu L, Pons N, Batto J M, Kennedy S P, Leonard P, Yuan C H, Ding W C, Chen Y T, Hu X J, Zheng B W, Qian G R, Xu W, Ehrlich S D, Zheng S S, Li L J. 2014. Alterations of the human gut microbiome in liver cirrhosis. Nature, 513 (7516): 59–64.CrossRefGoogle Scholar
  22. Rungrassamee W, Klanchui A, Maibunkaew S, Karoonuthaisiri N. 2016. Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp during Vibrio harveyi exposure. Journal of Invertebrate Pathology, 133: 12–19.CrossRefGoogle Scholar
  23. Sampson T R, Debelius J W, Thron T, Janssen S, Shastri G G, Ilhan Z E, Challis C, Schretter C E, Rocha S, Gradinaru V, Chesselet M F, Keshavarzian A, Shannon K M, Krajmalnik-Brown R, Wittung-Stafshede P, Knight R, Mazmanian S K. 2016. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 167 (6): 1469–1480.e12.CrossRefGoogle Scholar
  24. Song X Y, Dai D, He X, Zhu S, Yao Y K, Gao H C, Wang J J, Qu F F, Qiu J, Wang H L, Li X X, Shen N, Qian Y C. 2015. Growth factor FGF2 cooperates with interleukin-17 to repair intestinal epithelial damage. Immunity, 43 (3): 488–501.CrossRefGoogle Scholar
  25. Tremaroli, V, Bäckhed, F. 2012. Functional interactions between the gut microbiota and host metabolism. Nature, 489 (7415): 242–249.CrossRefGoogle Scholar
  26. Turnbaugh P J, Hamady M, Yatsunenko T, Cantarel B L, Duncan A, Ley R E, Sogin M L, Jones W J, Roe B A, Affourtit J P, Egholm M, Henrissat B, Heath A C, Knight R, Gordon J I. 2009. A core gut microbiome in obese and lean twins. Nature, 457 (7228): 480–484.CrossRefGoogle Scholar
  27. Wan X H, Shen H, Wang L B, Cheng Y X. 2011. Isolation and characterization of Vibrio metschnikovii causing infection in farmed Portunus trituberculatus in China. Aquacult ure Int ernational, 19 (2): 351–359.CrossRefGoogle Scholar
  28. Wang G X, Huang Z R, Yuan M. 2007. Isolation and identification of the pathogen of milk disease cultured in swimming crab Portunus tritubercularus (portunidae). Journal of Northwest A & F University ( Natural Science Edition ), 35(6): 29–33. (in Chinese with English abstract)Google Scholar
  29. Wang Z N, Klipfell E, Bennett B J, Koeth R, Levison B S, DuGar B, Feldstein A E, Britt E B, Fu X M, Chung Y M, Wu Y P, Schauer P, Smith J D, Allayee H, Tang W H W, DiDonato J A, Lusis A J, Hazen S L. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472 (7341): 57–63.CrossRefGoogle Scholar
  30. Wu H J, Sun L B, Li C B, Li Z Z, Zhang Z, Wen X B, Hu Z, Zhang Y L, Li S K. 2014. Enhancement of the immune response and protection against Vibrio parahaemolyticus by indigenous probiotic Bacillus strains in mud crab ( Scylla paramamosain ). Fish & Shellfish Immunology, 41: 156–162.CrossRefGoogle Scholar
  31. Wu T, Zhang Z L, Cai C F, Ye Y T, Zhu J M, Li T. 2015. The eff ect of pectin and xylan on intestinal microflora structure of Chinese mitten crab. Genomics and Applied Biology, 34 (4): 745–753. (in Chinese with English abstract)Google Scholar
  32. Xiong J B, Wang K, Wu J F, Qiuqian L, Yang K J, Qian Y X, Zhang D M. 2015. Changes in intestinal bacterial communities are closely associated with shrimp disease severity. Applied Microbiology and Biotechnology, 99 (16): 6911–6919.CrossRefGoogle Scholar
  33. Xiong J B, Zhu J Y, Dai W F, Dong C M, Qiu Q F, Li C H. 2017. Integrating gut microbiota immaturity and diseasediscriminatory taxa to diagnose the initiation and severity of shrimp disease. Environmental Microbiology, 19 (4): 1490–1501.CrossRefGoogle Scholar
  34. Yan B L, Qin G M, Bao Z H, Zhang X J, Bi K R, Qin L. 2010. Isolation and identification of Vibrio parahaemolyticus from diseased Portunus trituberculatus L. Marine Science Bulletin, 29 (5): 560–566. (in Chinese with English abstract)Google Scholar
  35. Yang N, Zhang D F, Tao Z, Li M, Zhou S M, Wang G L. 2016. Identification of a novel class B scavenger receptor homologue in Portunus trituberculatus: molecular cloning and microbial ligand binding. Fish & Shellfish Immun ology, 58: 73–81.CrossRefGoogle Scholar
  36. Ye Y F, Xia M J, Mu C K, Li R H, Wang C L. 2016. Acute metabolic response of Portunus trituberculatus to Vibrio alginolyticus infection. Aquaculture, 463: 201–208.CrossRefGoogle Scholar
  37. Yoshikawa K, Takadera T, Adachi K, Nishijima M, Sano H. 1997. Korormicin, a novel antibiotic specifically active against marine Gram-negative bacteria, produced by a marine bacterium. The Journal of Antibiotics, 50 (11): 949–953.CrossRefGoogle Scholar
  38. Zeng T L, Ye Y F, Mu C K, Wang K, Li R H, Wang C L. 2016. Gut microbiota and metabolic phenotype of Portunus trituberculatus. Chinese Journal of Analytical Chemistry, 44 (12): 1867–1873.CrossRefGoogle Scholar
  39. Zhang M L, Sun Y H, Chen L Q, Cai C F, Qiao F, Du Z Y, Li E C. 2016. Symbiotic bacteria in gills and guts of Chinese mitten crab (Eriocheir sinensis) diff er from the free-living bacteria in water. PLoS One, 11 (1): e0148135.CrossRefGoogle Scholar
  40. Zhang X J, Bai X S, Yan B L, Bi K R, Qin L. 2014. Vibrio harveyi as a causative agent of mass mortalities of megalopa in the seed production of swimming crab Portunus trituberculatus. Aquacult ure Int ernational, 22 (2): 661–672.CrossRefGoogle Scholar
  41. Zhu J Y, Dai W F, Qiu Q F, Dong C M, Zhang J J, Xiong J B. 2016. Contrasting ecological processes and functional compositions between intestinal bacterial community in healthy and diseased shrimp. Microbial Ecology, 72 (4): 975–985.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mengjie Xia (夏梦洁)
    • 1
    • 2
  • Feng Pei (裴峰)
    • 1
  • Changkao Mu (母昌考)
    • 1
  • Yangfang Ye (叶央芳)
    • 1
  • Chunlin Wang (王春琳)
    • 1
  1. 1.Key Laboratory of Applied Marine Biotechnology (Ningbo University)Ministry of EducationNingboChina
  2. 2.Collaborative Innovation Center for Zhejiang Marine High-Effi ciency and Healthy AquacultureNingboChina

Personalised recommendations