Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 4, pp 1349–1359 | Cite as

Gene expression during different periods of the handling-stress response in Pampus argenteus

  • Peng Sun (孙鹏)
  • Baojun Tang (唐保军)
  • Fei Yin (尹飞)
Biology
  • 57 Downloads

Abstract

Common aquaculture practices subject fish to a variety of acute and chronic stressors. Such stressors are inherent in aquaculture production but can adversely affect survival, growth, immune response, reproductive capacity, and behavior. Understanding the biological mechanisms underlying stress responses helps with methods to alleviate the negative effects through better aquaculture practices, resulting in improved animal welfare and production efficiency. In the present study, transcriptome sequencing of liver and kidney was performed in silver pomfret (Pampus argenteus) subjected to handling stress versus controls. A total of 162.19 million clean reads were assembled to 30 339 unigenes. The quality of the assembly was high, with an N50 length of 2 472 bases. For function classification and pathway assignment, the unigenes were categorized into three GO (gene ontology) categories, twenty-six clusters of eggNOG (evolutionary genealogy of genes: non-supervised orthologous groups) function categories, and thirty-eight KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. Stress affected different functional groups of genes in the tissues studied. Differentially expressed genes were mainly involved in metabolic pathways (carbohydrate metabolism, lipid metabolism, amino-acid metabolism, uptake of cofactors and vitamins, and biosynthesis of other secondary metabolites), environmental information processing (signaling molecules and their interactions), organismal systems (endocrine system, digestive system), and disease (immune, neurodegenerative, endocrine and metabolic diseases). This is the first reported analysis of genome-wide transcriptome in P. argenteus, and the findings expand our understanding of the silver pomfret genome and gene expression in association with stress. The results will be useful to future analyses of functional genes and studies of healthy artificial breeding in P. argenteus and other related fish species.

Keyword

gene ontology immune system next-generation sequencing transcriptome unigenes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almatar S M, Lone K P, Abu-Rezq T S, Yousef A A. 2004. Spawning frequency, fecundity, egg weight and spawning type of silver pomfret, Pampus argenteus (Euphrasen) (Stromateidae), in Kuwait waters. J. Appl. Ichthy., 20 (3): 176–188.CrossRefGoogle Scholar
  2. Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Gen. Biol., 11: R106.CrossRefGoogle Scholar
  3. Bolasina S N. 2011. Stress response of juvenile flounder (Paralichthys orbignyanus, Valenciennes 1839), to acute and chronic stressors. Aquaculture, 313 (1–4): 140–143.CrossRefGoogle Scholar
  4. Bonga S E W. 1997. The stress response in fish. Physiol. Rev., 77 (3): 591–625.CrossRefGoogle Scholar
  5. Cairns M T, Johnson M C, Talbot A T, Pemmasani J K, McNeill R E, Houeix B, Sangrador-Vegas A, Pottinger T G. 2008. A cDNA microarray assessment of gene expression in the liver of rainbow trout (Oncorhynchus mykiss) in response to a handling and confinement stressor. Comp. Biochem. Physiol. D, 3 (1): 51–66.Google Scholar
  6. Campbell P M, Pottinger T G, Sumpter J P. 1992. Stress reduces the quality of gametes produced by rainbow trout. Biol. Reprod., 47 (6): 1 140–1 150.CrossRefGoogle Scholar
  7. Cara J B, Aluru N, Moyano F J, Vijayan M M. 2005. Fooddeprivation induces HSP70 and HSP90 protein expression in larval gilthead sea bream and rainbow trout. Comp. Biochem. Physiol. B, 142 (4): 426–431.CrossRefGoogle Scholar
  8. Castanheira M F, Herrera M, Costas B, Conceição L E C, Martins C I M. 2013. Linking cortisol responsiveness and aggressive behaviour in gilthead seabream Sparus aurata: Indication of divergent coping styles. Appl. Anim. Behav. Sci., 143 (1): 75–81.CrossRefGoogle Scholar
  9. Chen F F, Lin H B, Li J C, Wang Y, Li J, Zhang D G, Yu W Y. 2017. Grass carp (Ctenopharyngodon idellus) invariant chain of the MHC class II chaperone protein associates with the class I molecule. Fish Shellfish Immunol., 63: 1–8.CrossRefGoogle Scholar
  10. Davis Κ Β. 2006. Management of physiological stress in finfish aquaculture. North Am. J. Aquac., 68 (2): 116–121.CrossRefGoogle Scholar
  11. Don Wickramaarachchi W, Wan Q, Lee Y, Lim B S, De Zoysa M, Oh M J, Jung S J, Kim H C, Whang I, Lee J. 2012. Genomic characterization and expression analysis of complement component 9 in rock bream (Oplegnathus fasciatus). Fish Shellfish Immunol., 33 (4): 707–717.CrossRefGoogle Scholar
  12. Fiol D F, Chan S Y, Kültz D. 2006. Identification and pathway analysis of immediate hyperosmotic stress responsive molecular mechanisms in tilapia (Oreochromis mossambicus) gill. Comp. Biochem. Physiol. D, 1 (3): 344–356.Google Scholar
  13. Gao Q X, Gao Q, Min M H, Zhang C J, Peng S M, Shi Z H. 2016. Ability of Lactobacillus plantarum lipoteichoic acid to inhibit Vibrio anguillarum-induced inflammation and apoptosis in silvery pomfret (Pampus argenteus) intestinal epithelial cells. Fish Shellfish Immunol., 54: 573–579.CrossRefGoogle Scholar
  14. Geiger J H, Jin X S. 2006. The structure and mechanism of myo-inositol 1-phosphate synthase. In Subcellular Biochemistry, Vol. 39 (ed. A. L. Majumder and B. B. Biswas), Springer. p.157–180.CrossRefGoogle Scholar
  15. Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q D, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. 2011. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol., 29 (7): 644–652.CrossRefGoogle Scholar
  16. Grimholt U, Larsen S, Nordmo R, Midtlyng P, Kjoeglum S, Storset A, Saebø S, Stet R J M. 2003. MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci. Immunogenetics, 55 (4): 210–219.CrossRefGoogle Scholar
  17. Guo B Y, Wu C W, Lv Z M, Liu C L. 2016. Characterisation and expression analysis of two terminal complement components: C7 and C9 from large yellow croaker, Larimichthys crocea. Fish Shellfish Immunol., 51: 211–219.CrossRefGoogle Scholar
  18. Haas B J, Papanicolaou A, Yassour M, Grabherr M, Blood P D, Bowden J, Couger M B, Eccles D, Li B, Lieber M, MacManes M D, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey C N, Henschel R, LeDuc R D, Friedman N, Regev A. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc., 8 (8): 1 494–1 512.CrossRefGoogle Scholar
  19. Harmon T S. 2009. Methods for reducing stressors and maintaining water quality associated with live fish transport in tanks: a review of the basics. Rev. Aquac., 1 (1): 58–66.CrossRefGoogle Scholar
  20. Heratha H M L P B, Elvitigalaa D A S, Godahewa G I, Umasuthana N, Whang I, Nohc J K, Lee J. 2016. Molecular characterization and comparative expression analysis of two teleostean pro-inflammatory cytokines, IL-1 β and IL-8, from Sebastes schlegeli. Gene, 575 (2): 732–742.CrossRefGoogle Scholar
  21. Hoskonen P, Pirhonen J. 2006. Effects of repeated handling, with or without anaesthesia, on feed intake and growth in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum). Aqua. Res., 37 (4): 409–415.CrossRefGoogle Scholar
  22. Huang X X, Yin Y Q, Shi Z H, Li W W, Zhou H Q, Lv W Q. 2010. Lipid content and fatty acid composition in wildcaught silver pomfret (Pampus argenteus) broodstocks: effects on gonad development. Aquaculture, 310 (1–2): 192–199.CrossRefGoogle Scholar
  23. Jia R, Liu B L, Feng W R, Han C, Huang B, Lei J L. 2016. Stress and immune responses in skin of turbot (Scophthalmus maximus) under different stocking densities. Fish Shellfish Immunol., 55: 131–139.  https://doi.org/10.1016/j.fsi.2016.05.032.CrossRefGoogle Scholar
  24. Kajimura S, Kawaguchi N, Kaneko T, Kawazoe I, Hirano T, Visitacion N, Grau E G, Aida K. 2004. Identification of the growth hormone receptor in an advanced teleost, the tilapia (Oreochromis mossambicus) with special reference to its distinct expression pattern in the ovary. J. Endocrinol., 181 (1): 65–76.CrossRefGoogle Scholar
  25. Krasnov A, Koskinen H, Pehkonen P, Rexroad C, Afanasyev S, Mölsä H. 2005. Gene expression in the brain and kidney of rainbow trout in response to handling stress. BMC Genomics, 6: 3.Google Scholar
  26. Lefèvre F, Bugeon J, Aupérin B, Aubin J. 2008. Rearing oxygen level and slaughter stress effects on rainbow trout flesh quality. Aquaculture, 284 (1–4): 81–89.CrossRefGoogle Scholar
  27. Li Y J, Huang J Q, Liu Z, Zhou Y J, Xia B P, Wang Y J, Kang Y J, Wang J F. 2017. Transcriptome analysis provides insights into hepatic responses to moderate heat stress in the rainbow trout (Oncorhynchus mykiss). Gene, 619: 1–9.CrossRefGoogle Scholar
  28. Liu J, Li C S, Ning P. 2013. Identity of silver pomfret Pampus argenteus (Euphrasen, 1788) based on specimens from its type locality, with a neotype designation (Teleostei, Stromateidae). Acta Zootaxonomica Sinica, 38 (1): 171–177.Google Scholar
  29. Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetJ, 17 (1): 10–12.CrossRefGoogle Scholar
  30. Momoda T S, Schwindt A R, Feist G W, Gerwick L, Bayne C J, Schreck C B. 2007. Gene expression in the liver of rainbow trout, Oncorhynchus mykiss, during the stress response. Comp. Biochem. Physiol. D, 2 (4): 303–315.Google Scholar
  31. Morozova O, Marra M A. 2008. Applications of nextgeneration sequencing technologies in functional genomics. Genomics, 92 (5): 255–264.CrossRefGoogle Scholar
  32. Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 5 (7): 621–628.CrossRefGoogle Scholar
  33. Nakano T, Afonso L O B, Beckman B R, Iwama G K, Devlin R H. 2013. Acute physiological stress down-regulates mRNA expression of growth-related genes in Coho salmon. PloS One, 8 (8): e71421,  https://doi.org/10.1371/journal.pone.0071421.CrossRefGoogle Scholar
  34. Olsen R E, Sundell K, Mayhew T M, Myklebust R, Ring E. 2005. Acute stress alters intestinal function of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture, 250 (1–2): 480–495.CrossRefGoogle Scholar
  35. Øverli O, Winberg S, Pottinger T G. 2005. Behavioral and neuroendocrine correlates of selection for stress responsiveness in rainbow trout-a review. Integr. Comp. Biol., 45 (3): 463–474.CrossRefGoogle Scholar
  36. Ozsolak F, Milos P M. 2011. RNA sequencing: advances, challenges and opportunities. Nat. Rev. Genet., 12 (2): 87–98.CrossRefGoogle Scholar
  37. Parma L, Candela M, Soverini M, Turroni S, Consolandi C, Brigidi P, Mandrioli L, Sirri R, Fontanillas R, Gatta P P, Bonaldo A. 2016. Next-generation sequencing characterization of the gut bacterial community of gilthead sea bream (Sparus aurata, L.) fed low fishmeal based diets with increasing soybean meal levels. Anim. Feed Sci. Tech., 222: 204–216.CrossRefGoogle Scholar
  38. Peters M B, Turner T F. 2008. Genetic variation of the major histocompatibility complex (MHC class II β gene) in the threatened Gila trout, Oncorhynchus gilae gilae. Conserv. Genet., 9 (2): 257–270.CrossRefGoogle Scholar
  39. Pierce A L, Fox B K, Davis L K, Visitacion N, Kitahashi T, Hirano T, Grau E G. 2005. Prolactin receptor, growth hormone receptor, and putative somatolactin receptor in Mozambique tilapia: tissue specific expression and differential regulation by salinity and fasting. Gen. Comp. Endocrinol., 154 (1–3): 31–40.Google Scholar
  40. Qian B Y, Xue L Y. 2016. Liver transcriptome sequencing and de novo annotation of the large yellow croaker (Larimichthy crocea) under heat and cold stress. Mar. Genomics, 25: 95–102.CrossRefGoogle Scholar
  41. Reindl K M, Kittilson J D, Sheridan M A. 2009. Differential ligand binding and agonist-induced regulation characteristics of the two rainbow trout GH receptors, Ghr1 and Ghr2, in transfected cells. J. Endocrinol., 202 (3): 463–471.CrossRefGoogle Scholar
  42. Sahin K, Yazlak H, Orhan C, Tuzcu M, Akdemir F, Sahin N. 2014. The effect of lycopene on antioxidant status in rainbow trout (Oncorhynchus mykiss) reared under high stocking density. Aquaculture, 418–419: 132–138.CrossRefGoogle Scholar
  43. Sánchez C C, Weber G M, Gao G T, Cleveland B M, Yao J B, Rexroad III C E. 2011. Generation of a reference transcriptome for evaluating rainbow trout responses to various stressors. BMC Genomics, 12: 626.CrossRefGoogle Scholar
  44. Smith S, Bernatchez L, Beheregaray L B. 2013. RNA-seq analysis reveals extensive transcriptional plasticity to temperature stress in a freshwater fish species. BMC Genomics, 14: 375.CrossRefGoogle Scholar
  45. Sun P, Shi Z H, Yin F, Peng S M. 2012. Population genetic structure and demographic history of Pampus argenteus in the Indo-west Pacific inferred from mitochondrial cytochrome b sequences. Biochem. Syst. Ecol., 43: 54–63.CrossRefGoogle Scholar
  46. Sun P, Yin F, Shi Z, Peng S. 2013. Genetic structure of silver pomfret (Pampus argenteus (Euphrasen, 1788)) in the Arabian Sea, Bay of Bengal, and South China Sea as indicated by mitochondrial COI gene sequences. J. Appl. Ichthyol., 29 (4): 733–737.CrossRefGoogle Scholar
  47. Sun P, Yin F, Tang B J. 2017. Effects of acute handling stress on expression of growth-related genes in Pampus argenteus. J. World Aquacult. SOC., 48 (1): 166–179.CrossRefGoogle Scholar
  48. Wang Y, Xu S S, Su Y H, Ye B P, Hua Z C. 2013. Molecular characterization and expression analysis of complement component C9 gene in the whitespotted bambooshark, Chiloscyllium plagiosum. Fish Shellfish Immunol., 35 (2): 599–606.CrossRefGoogle Scholar
  49. Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10 (1): 57–63.CrossRefGoogle Scholar
  50. Wu C X, Zhao F Y, Zhang Y, Zhu Y J, Ma M S, Mao H L, Hu C Y. 2012. Overexpression of Hsp90 from grass carp (Ctenopharyngodon idella) increases thermal protection against heat stress. Fish Shellfish Immunol., 33 (1): 42–47.CrossRefGoogle Scholar
  51. Wu X M, Hu Y W, Xue N N, Ren S S, Chen S N, Nie P, Chang M X. 2017. Role of zebrafish NLRC5 in antiviral response and transcriptional regulation of MHC related genes. Dev. Comp. Immunol., 68: 58–68.CrossRefGoogle Scholar
  52. Xie Y J, Song L, Weng Z H, Liu S K, Liu Z J. 2015. Hsp90, Hsp60 and sHsp families of heat shock protein genes in channel catfish and their expression after bacterial infections. Fish Shellfish Immunol., 44 (2): 642–651.CrossRefGoogle Scholar
  53. Zhang C N, Tian H Y, Li X F, Zhu J, Cai D S, Xu C, Wang F, Zhang D D, Liu W B. 2014. The effects of fructooligosaccharide on the immune response, antioxidant capability and HSP70 and HSP90 expressions in blunt snout bream (Megalobrama amblycephala Yih) under high heat stress. Aquaculture, 433: 458–466.CrossRefGoogle Scholar
  54. Zhao F, Dong Y H, Zhuang P, Zhang T, Zhang L Z, Shi Z H. 2011. Genetic diversity of silver pomfret (Pampus argenteus) in the Southern Yellow and East China Seas. Biochem. Syst. Ecol., 39 (2): 145–150.CrossRefGoogle Scholar
  55. Zizza M, Di Lorenzo M, Laforgia V, Furia E, Sindona G, Canonaco M, Facciolo R M. 2017. HSP90 and pCREB alterations are linked to mancozeb-dependent behavioral and neurodegenerative effects in a marine teleost. Toxicol. Appl. Pharmacol., 323: 26–35.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Peng Sun (孙鹏)
    • 1
  • Baojun Tang (唐保军)
    • 1
  • Fei Yin (尹飞)
    • 1
  1. 1.Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture; East China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesShanghaiChina

Personalised recommendations