Nutrient-enhanced n-alkanes biodegradation and succession of bacterial communities

  • Yanyu Sun (孙延瑜)
  • Hui Wang (王慧)
  • Junde Li (李俊德)
  • Bin Wang (王斌)
  • Cancan Qi (齐灿灿)
  • Xiaoke Hu (胡晓珂)
Article
  • 56 Downloads

Abstract

Bioremediation, is an effective and environment-friendly method of cleaning up crude oil pollution after an oil spill. However, the in situ bioremediation of crude oil is usually inhibited by deficiency of inorganic nutrients. To understand the effects of nutrient addition on the bioremediation of crude oil and the succession of bacterial communities during process of bioremediation, microcosms containing oil-contaminated sediments were constructed and biodegradation of crude oil was assessed based on the depletion of different ingredients. We used two culture-independent methods, denaturing gradient gel electrophoresis and a 16S rRNA gene based clone library, to analyze the succession of bacterial communities. The results suggested n-alkanes were degraded after 30 days and that nutrient amendments significantly improved the efficiency of their biodegradation. Moreover, oil contamination and nutrient amendments could dramatically change bacterial community structures. Lower diversity was detected after being contaminated with oil. For instance, bacterial clones affiliated with the phylum Armatimonadetes, Firmicutes, Gemmatimonadetes, and Planctomycetes and the class Deltaproteobacteria and Epsilonproteobacteria could not be identified after 30 days of incubation with crude oil. However, “professional hydrocarbonocastic bacteria” became abundant in samples treated with oil during the bioremediation period, while these clones were almost completely absent from the control plots. Interestingly, bioinformatics analysis showed that even when dramatic differences in oil biodegradation efficiency were observed, bacterial communities in the plots with nutrient amendments were not significantly different from those in plots treated with oil alone. These findings indicated that nutrient amendments could stimulate the process of biodegradation but had less impact on bacterial communities. Overall, nutrient amendments might be able to stimulate the growth of n-alkane degrading bacteria.

Keywords

bioremediation nutrient-enhanced bacterial communities n-alkane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

We acknowledge critical review of the manuscript by Dr. Roy Bonnette from Southeastern Louisiana University.

References

  1. Atlas R M. 1995. Bioremediation of petroleum pollutants. Int. Biodeter. Biodegr., 35(1-3): 317–327.CrossRefGoogle Scholar
  2. Bost F D, Frontera-Suau R, McDonald T J, Peters K E, Morris P J. 2001. Aerobic biodegradation of hopanes and norhopanes in Venezuelan crude oils. Org. Geochem., 32(1): 105–114.CrossRefGoogle Scholar
  3. Brzostowicz P C, Walters D M, Jackson R E, Halsey K H, Ni H, Rouvière P E. 2005. Proposed involvement of a soluble methane monooxygenase homologue in the cyclohexane-dependent growth of a new Brachymonas species. Environ. Microbiol., 7(2): 179–190.CrossRefGoogle Scholar
  4. Carmichael L M, Pfaender F K. 1997. The effect of inorganic and organic supplements on the microbial degradation of phenanthrene and pyrene in soils. Biodegradation,8(1): 1–13.CrossRefGoogle Scholar
  5. Chaîneau C H, Rougeux G, Yéprémian C, Oudot J. 2005. Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biol. Biochem., 37(8): 1 490–1 497.CrossRefGoogle Scholar
  6. Enticknap J J, Kelly M, Peraud O, Hill R T. 2006. Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. Appl. Environ. Microbiol., 72(5): 3 724–3 732.CrossRefGoogle Scholar
  7. Haaijer S C M, Harhangi H R, Meijerink B B, Strous M, Pol A, Smolders A J P, Verwegen K, Jetten M S M, den Camp H J M O. 2008. Bacteria associated with iron seeps in a sulfur-rich, neutral pH, freshwater ecosystem. ISME J., 2(12): 1 231–1 242.CrossRefGoogle Scholar
  8. Harayama S, Kishira H, Kasai Y, Shutsubo K. 1999. Petroleum biodegradation in marine environments. J. Mol. Microbiol. Biotechnol., 1(1): 63–70.Google Scholar
  9. Head I M, Jones D M, Röling W F M. 2006. Marine microorganisms make a meal of oil. Nat. Rev. Micro biol., 4(3): 173–182.CrossRefGoogle Scholar
  10. Hennessee C T, Seo J S, Alvarez A M, Li Q X. 2009. Polycyclic aromatic hydrocarbon-degrading species isolated from Hawaiian soils: Mycobacterium crocinum sp. nov., Mycobacterium pallens sp. nov., Mycobacterium rutilum sp. nov., Mycobacterium rufum sp. nov. and Mycobacterium aromaticivorans sp. nov. Int. J. Syst. Evol. Micr obiol., 59(Pt 2): 378–387.CrossRefGoogle Scholar
  11. Kodama Y, Watanabe K. 2004. Sulfuricurvum kujiense gen. nov., sp. nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude-oil storage cavity. Int. J. Syst. Evol. Micr obiol., 54(Pt 6): 2 297–2 300.Google Scholar
  12. Liu Y, Song X F, Jiang J T, Liu Y H, Xu C J, Li H, Liu Z P. 2011. Hydrocarboniphaga daqingensis sp. nov., isolated from a freshwater lake. Int. J. Syst. Evol. Microbiol., 61(2): 408–411.CrossRefGoogle Scholar
  13. Luo Y R, Tian Y, Huang X, Kwon K, Yang S H, Seo H S, Kim S J, Zheng T L. 2012. Sphingomonas polyaromaticivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium from an oil port water sample. Int. J. Syst. Evol. Micr obiol., 62(6): 1 223–1 227.CrossRefGoogle Scholar
  14. Margesin R. 2000. Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils. Int. Biodeter ior. Biodegr ad., 46(1): 3–10.CrossRefGoogle Scholar
  15. Martin F, Malagnoux L, Violet F, Jakoncic J, Jouanneau Y. 2013. Diversity and catalytic potential of PAH-specific ring-hydroxylating dioxygenases from a hydrocarboncontaminated soil. Appl. Microbiol. Biotechnol., 97 (11): 5 125–5 135.CrossRefGoogle Scholar
  16. Mattes T E, Alexander A K, Richardson P M, Munk A C, Han C S, Stothard P, Coleman N V. 2008. The genome of Polaromonas sp. strain JS666: insights into the evolution of a hydrocarbon-and xenobiotic-degrading bacterium, and features of relevance to biotechnology. Appl. Environ. Microbiol., 74 (20): 6 405–6 416.CrossRefGoogle Scholar
  17. McKew B A, Coulon F, Yakimov M M, Denaro R, Genovese M, Smith C, Osborn A M, Timmis K N, McGenity T J. 2007. Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environ. Microbiol., 9(6): 1 562–1 571.CrossRefGoogle Scholar
  18. Mendelssohn I A, Andersen G L, Baltz D M, Caffey R H, Carman K R, Fleeger J W, Joye S B, Lin Q X, Maltby E, Overton E B, Rozas L P. 2012. Oil impacts on coastal wetlands: implications for the Mississippi River Delta ecosystem after the Deepwater horizon oil spill. BioScience,62(6): 562–574.CrossRefGoogle Scholar
  19. Mohamed N M, Enticknap J J, Lohr J E, McIntosh S M, Hill R T. 2008. Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl. Environ. Microbiol., 74(4): 1 209–1 222.CrossRefGoogle Scholar
  20. Mohn W W, Stewart G R. 2000. Limiting factors for hydrocarbon biodegradation at low temperature in arctic soils. Soil Biol. Biochem., 32 (8-9): 1 161–1 172.CrossRefGoogle Scholar
  21. Oudot J, Merlin F X, Pinvidic P. 1998. Weathering rates of oil components in a bioremediation experiment in estuarine sediments. Mar. Environ. Res., 45(2): 113–125.CrossRefGoogle Scholar
  22. Palleroni N J, Port A M, Chang H K, Zylstra G J. 2004. Hydrocarboniphaga effusa gen. nov., sp. nov., a novel member of the γ-Proteobacteria active in alkane and aromatic hydrocarbon degradation. Int. J. Syst. Evol. Microbiol., 54(4): 1 203–1 207.CrossRefGoogle Scholar
  23. Röling W F M, de Brito I R C, Swannell R P J, Head I M. 2004a. Response of archaeal communities in beach sediments to spilled oil and bioremediation. Appl. Environ. Microbiol., 70(5): 2 614–2 620.CrossRefGoogle Scholar
  24. Röling W F M, Milner M G, Jones D M, Fratepietro F, Swannell R P J, Daniel F, Head I M. 2004b. Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudfl at beach contaminated with buried oil. Appl. Environ. Microbiol., 70(5): 2 603–2 613.CrossRefGoogle Scholar
  25. Röling W F M, Milner M G, Jones D M, Lee K, Daniel F, Swannell R J P, Head I M. 2002. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl. Environ. Microbiol., 68(11): 5 537–5 548.CrossRefGoogle Scholar
  26. Schloss P D, Westcott S L, Ryabin T, Hall J R, Hartmann M, Hollister E B, Lesniewski R A, Oakley B B, Parks D H, Robinson C J, Sahl J W, Stres B, Thallinger G G, Van Horn D J, Weber C F. 2009. Introducing mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol., 75(23): 7 537–7 541.CrossRefGoogle Scholar
  27. Sei K, Sugimoto Y, Mori K, Maki H, Kohno T. 2003. Monitoring of alkane-degrading bacteria in a sea-water microcosm during crude oil degradation by polymerase chain reaction based on alkane-catabolic genes. Environ. Microbiol., 5(6): 517–522.CrossRefGoogle Scholar
  28. Singleton D R, Sangaiah R, Gold A, Ball L M, Aitken M D. 2006. Identification and quantification of uncultivated Proteobacteria associated with pyrene degradation in a bioreactor treating PAH-contaminated soil. Environ. Microbiol., 8(10): 1 736–1 745.CrossRefGoogle Scholar
  29. Szabó I, Szoboszlay S, Kriszt B, Háhn J, Harkai P, Baka E, Táncsics A, Kaszab E, Privler Z, Kukolya J. 2011. Olivibacter oleidegradans sp. nov., a hydrocarbondegrading bacterium isolated from a biofilter clean-up facility on a hydrocarbon-contaminated site. Int. J. Syst. Evol. Micr obiol., 61(12): 2 861–2 865.CrossRefGoogle Scholar
  30. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 28(10): 2 731–2 739.CrossRefGoogle Scholar
  31. Wang H, Laughinghouse IV H D, Anderson M A, Chen F, Willliams E, Place A R, Zmora O, Zohar Y, Zheng T L, Hill R T. 2012. Novel bacterial isolate from Permian groundwater, capable of aggregating potential biofuelproducing microalga Nannochloropsis oceanica IMET1. Appl. Environ. Microbiol., 78(5): 1 445–1 453.CrossRefGoogle Scholar
  32. Wang H, Wang C X, Lin M, Sun X N, Wang C Y, Hu X K. 2013. Phylogenetic diversity of bacterial communities associated with bioremediation of crude oil in microcosms. Int. Biodeter ior. Biodegr ad., 85: 400–406.CrossRefGoogle Scholar
  33. Yakimov M M, Golyshin P N, Lang S, Moore E R B, Abraham W R, Lünsdorf H, Timmis K N. 1998. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbondegrading and surfactant-producing marine bacterium. Int. J. Syst. Evol. Micr obiol,48(2): 339–348.Google Scholar
  34. Zhao B S, Wang H, Li R R, Mao X W. 2010. Thalassospira xianhensis sp. nov., a polycyclic aromatic hydrocarbondegrading marine bacterium. Int. J. Syst. Evol. Micr obiol., 60 (5): 1 125–1 129.CrossRefGoogle Scholar
  35. Zhao D F, Liu C S, Liu L H, Zhang Y B, Liu Q Y, Wu W M. 2011. Selection of functional consortium for crude oilcontaminated soil remediation. Int. Biodeter ior. Biodegr ad., 65(8): 1 244–1 248.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Yanyu Sun (孙延瑜)
    • 1
    • 2
  • Hui Wang (王慧)
    • 1
  • Junde Li (李俊德)
    • 1
    • 2
  • Bin Wang (王斌)
    • 1
    • 2
  • Cancan Qi (齐灿灿)
    • 1
    • 2
  • Xiaoke Hu (胡晓珂)
    • 1
  1. 1.Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone ResearchChinese Academy of SciencesYantaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations