Journal of Oceanology and Limnology

, Volume 36, Issue 1, pp 33–47 | Cite as

Influences of two types of El Niño event on the Northwest Pacific and tropical Indian Ocean SST anomalies

  • Haibo Hu (胡海波)
  • Qigang Wu (吴其冈)
  • Zepeng Wu (吴泽鹏)
Article
  • 42 Downloads

Abstract

Based on the HadISST1 and NCEP datasets, we investigated the influences of the central Pacific El Niño event (CP-EL) and eastern Pacific El Niño event (EP-EL) on the Sea Surface Temperature (SST) anomalies of the Tropical Indian Ocean. Considering the remote effect of Indian Ocean warming, we also discussed the anticyclone anomalies over the Northwest Pacific, which is very important for the South China precipitation and East Asian climate. Results show that during the El Niño developing year of EP-EL, cold SST anomalies appear and intensify in the east of tropical Indian Ocean. At the end of that autumn, all the cold SST anomaly events lead to the Indian Ocean Dipole (IOD) events. Basin uniform warm SST anomalies exist in the Indian Ocean in the whole summer of EL decaying year for both CP-and EP-ELs. However, considering the statistical significance, more significant warm SST anomalies only appear in the North Indian Ocean among the June and August of EP-EL decaying year. For further research, EP-EL accompany with Indian Ocean Basin Warming (EPI-EL) and CP El Niño accompany with Indian Ocean Basin Warming (CPI-EL) events are classified. With the remote effects of Indian Ocean SST anomalies, the EPI-and CPI-ELs contribute quite differently to the Northwest Pacific. For the EPI-EL developing year, large-scale warm SST anomalies arise in the North Indian Ocean in May, and persist to the autumn of the El Niño decaying year. However, for the CPI-EL, weak warm SST anomalies in the North Indian Ocean maintain to the El Niño decaying spring. Because of these different SST anomalies in the North Indian Ocean, distinct zonal SST gradient, atmospheric anticyclone and precipitation anomalies emerge over the Northwest Pacific in the El Niño decaying years. Specifically, the large-scale North Indian Ocean warm SST anomalies during the EPI-EL decaying years, can persist to summer and force anomalous updrafts and rainfall over the North Indian Ocean. The atmospheric heating caused by this precipitation anomaly emulates atmospheric Kelvin waves accompanied by low level easterly anomalies over the Northwest Pacific. As a result, a zonal SST gradient with a warm anomaly in the west and a cold anomaly in the east of Northwest Pacific is generated locally. Furthermore, the atmospheric anticyclone and precipitation anomalies over the Northwest Pacific are strengthened again in the decaying summer of EPI-EL. Affected by the local Wind-Evaporation-SST (WES) positive feedback, the suppressed East Asian summer rainfall then persists to the late autumn during EPI-EL decaying year, which is much longer than that of CPI-EL.

Keywords

EPI-EL CPI-EL Indian Ocean SST anomalies zonal SST gradient in the Northwest Pacific Northwest Pacific anticyclone anomaly East Asian Summer rainfall 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Annamalai H, Murtugudde R, Potemra J et al. 2003. Coupled dynamics over the Indian Ocean: Spring initiation of the zonal mode. Deep Sea Res. Part II Top Stud Oceanogr., 50 (12-13): 2305–2330.CrossRefGoogle Scholar
  2. Annamalai H, Xie S P, McCreary J P et al. 2005. Impact of indian ocean sea surface temperature on developing El Niño. J. Climate, 18 (2): 302–319.CrossRefGoogle Scholar
  3. Ashok K, Behera S K, Rao S A et al. 2007. El Niño modoki and its possible teleconnection. J. Geophys. Res., 112 (C11): C11007.CrossRefGoogle Scholar
  4. Choi J, An S I, Yeh S W et al. 2012. ENSO-like and ENSOinduced tropical Pacific decadal variability in CGCMs. J. Climate, 26 (5): 1485–1501.CrossRefGoogle Scholar
  5. Du Y, Xie S P, Huang G et al. 2009. Role of air-sea interaction in the long persistence of El Niño-induced North Indian Ocean warming. J. Climate, 22 (8): 2023–2038.CrossRefGoogle Scholar
  6. Du Y, Yang L, Xie S P. 2011. Tropical Indian ocean influence on northwest pacific tropical cyclones in summer following strong El Niño. J. Climate, 24 (1): 315–322.CrossRefGoogle Scholar
  7. Fan L, Shin S I, Liu Q Y et al. 2013. Relative importance of tropical SST anomalies in forcing East Asian summer monsoon circulation. Geophys. Res. Lett., 40 (10): 2471–2477.CrossRefGoogle Scholar
  8. Feng J, Chen W, Tam C Y et al. 2011. Different impacts of El Niño and El Niño modoki on China rainfall in the decaying phases. Int. J. Climatol., 31 (14): 2091–2101.CrossRefGoogle Scholar
  9. Feng J, Li J P. 2011. Influence of El Niño modoki on spring rainfall over south China. J. Geophys. Res., 116 (D13): D13102.CrossRefGoogle Scholar
  10. Feng J, Wang L, Chen W et al. 2010. Different impacts of two types of Pacific Ocean warming on southeast Asian rainfall during boreal winter. J. Geophys. Res., 115 (D24): D24122.CrossRefGoogle Scholar
  11. Fu C B, Fletcher J. 1985. Two types of tropical warming event during EL Niño. Chinese Science Bulletin, 31(8): 38–41.Google Scholar
  12. Guo F Y, Liu Q Y, Sun S et al. 2015. Three types of Indian Ocean dipoles. J. Climate, 28 (8): 3073–3092.CrossRefGoogle Scholar
  13. Hu H B, He J, Wu Q G, Zhang Y. 2011. The Indian Ocean’s asymmetric effect on the coupling of the Northwest Pacific SST and anticyclone anomalies during its springsummer transition after El Niño. J. Oceanogr., 67 (3): 315–321.CrossRefGoogle Scholar
  14. Hu H B, Hong X Y, Zhang Y et al. 2013a. The critical role of Indian summer monsoon on the remote forcing between Indian and Northwest Pacific during El Niño decaying year. Sci. China Earth Sci., 56 (3): 408–417.CrossRefGoogle Scholar
  15. Hu H B, Hong X Y, Zhang Y et al. 2013b. Remote forcing of Indian Ocean warming on Northwest Pacific during El Niño decaying years: a FOAM model approach. Chin. J. Oceanol. Limnol., 31 (6): 1375–1383, https://doi.org/10.1007/s00343-013-3075-1.CrossRefGoogle Scholar
  16. Huang G, Hu K M, Xie S P. 2010. Strengthening of tropical Indian Ocean teleconnection to the Northwest Pacific since the Mid-1970s: an atmospheric GCM study. J. Climate, 23 (19): 5294–5304.CrossRefGoogle Scholar
  17. Kao H Y, Yu J Y. 2009. Contrasting eastern-pacific and centralpacific types of El Niño. J. Climate, 22 (3): 615–632.CrossRefGoogle Scholar
  18. Klein S A, Soden B J, Lau N C. 1999. Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J. Climate, 12 (4): 917–932.CrossRefGoogle Scholar
  19. Kug J S, Jin F F, An S I. 2009. Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J. Climate, 22 (6): 1499–1515.CrossRefGoogle Scholar
  20. Larkin N K, Harrison D E. 2005. On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32 (13): L13705.CrossRefGoogle Scholar
  21. McPhaden M J, Busalacchi A J, Cheney R et al. 1998. The tropical ocean-global atmosphere observing system: a decade of progress. J. Geophys. Res., 103 (C7): 14169–14240.CrossRefGoogle Scholar
  22. McPhaden M J, Lee T, McClurg D. 2011. El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38 (15): L15709.CrossRefGoogle Scholar
  23. Murtugudde R, McCreary J P Jr, Busalacchi A J. 2000. Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997-1998. J. Geophys. Res., 105 (C2): 3295–3306.CrossRefGoogle Scholar
  24. Nagura M, Konda M. 2007. The seasonal development of an SST anomaly in the Indian Ocean and its relationship to ENSO. J. Climate, 20 (1): 38–52.CrossRefGoogle Scholar
  25. Peng J B, Zhang Q Y, Chen L T. 2011. Connections between different types of El Niño and Southern/Northern Oscillation. Acta Meteor. Sinica, 25 (4): 506–516.CrossRefGoogle Scholar
  26. Rasmusson E M, Carpenter T H. 1982. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110 (5): 354–384.CrossRefGoogle Scholar
  27. Ren H L, Jin F F. 2011. Niño indices for two types of ENSO. Geophys Res Lett, 38 (4): L04704.CrossRefGoogle Scholar
  28. Rong X Y, Zhang R H, Li T. 2010. Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon-ENSO relationship. Chin. Sci. Bull., 55 (22): 2458–2468.CrossRefGoogle Scholar
  29. Roxy M, Gualdi S, Drbohlav H K L et al. 2011. Seasonality in the relationship between El Niño and Indian Ocean dipole. Climate Dyn., 37 (1-2): 221–236.CrossRefGoogle Scholar
  30. Saji N H, Goswami B N, Vinayachandran P N et al. 1999. A dipole mode in the tropical Indian Ocean. Nature, 401 (6751): 360–363.Google Scholar
  31. Tan Y K, Zhang R H, He J H et al. 2004. Relationship of the interannual variations of sea surface temperature in tropical Indian ocean to ENSO. Acta Meteorologica Sinica, 62 (6): 831–840. (in Chinese)Google Scholar
  32. Trenberth K E, Tepaniak D P. 2001. Indices of El Niño Evolution. J Climate, 14 (8): 1697–1701.CrossRefGoogle Scholar
  33. Wallace J M, Rasmusson E M, Mitchell T P et al. 1998. On the structure and evolution of ENSO-related climate variability in the tropical Pacific: lessons from TOGA. J. Geophys. Res., 103 (C7): 14241–14259.CrossRefGoogle Scholar
  34. Wang B, Wu R G, Fu X H. 2000. Pacific–East Asian teleconnection: how does ENSO affect East Asian climate?. J. Climate, 13 (9): 1517–1536.CrossRefGoogle Scholar
  35. Wang C Z, Wang X. 2013a. Classifying El Niño modoki I and II by different impacts on rainfall in southern China and typhoon tracks. J. Climate, 26 (4): 1322–1338.CrossRefGoogle Scholar
  36. Wang X, Wang C Z. 2013b. Different impacts of various El Niño events on the Indian Ocean Dipole. Climate Dyn., 42 (3-4): 991–1005.CrossRefGoogle Scholar
  37. Wang X, Zhou W, Li C Y et al. 2014. Comparison of the impact of two types of El Niño on tropical cyclone genesis over the South China Sea. Int. J. Climatol., 34 (8): 2651–2660, doi: 10.1002/joc.3865.CrossRefGoogle Scholar
  38. Weng H Y, Ashok K, Behera S K et al. 2007. Impacts of recent El Niño modoki on dry/wet conditions in the Pacific Rim during boreal summer. Climate Dyn., 29 (2-3): 113–129.CrossRefGoogle Scholar
  39. Weng H Y, Wu G X, Liu Y M et al. 2011. Anomalous summer climate in China influenced by the tropical Indo-Pacific Oceans. Climate Dyn., 36 (3-4): 769–782.CrossRefGoogle Scholar
  40. Wu B, Tim L, Zhou T J. 2010. Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the Western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23 (11): 2974–2986.CrossRefGoogle Scholar
  41. Wu G X, Meng W. 1998. Gearing between the Indo-monsoon circulation and the Pacific-Walker circulation and the ENSO. Part I: data analyses. Chinese Journal of Atmospheric Sciences, 24 (1): 15–25. (in Chinese)Google Scholar
  42. Wu R G, Kirtman B P. 2004. Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J. Climate, 17 (20): 4019–4031.CrossRefGoogle Scholar
  43. Xiang B, Wang B, Ding Q et al. 2012. Reduction of the thermocline feedback associated with mean SST bias in ENSO simulation. Climate Dynamics, 39 (6): 1413–1430.CrossRefGoogle Scholar
  44. Xiao Y, Zhang Z Q, He J H. 2009. Progresses in the studies on Indian ocean dipoles. Journal of Tropical Meteorology, 25 (5): 621–627. (in Chinese)Google Scholar
  45. Xie S P, Hu K M, Hafner J et al. 2009. Indian ocean capacitor effect on indo-western Pacific Climate during the Summer following El Niño. J. Climate, 22 (3): 730–747.CrossRefGoogle Scholar
  46. Xie S P, Philander S G H. 1994. A coupled ocean-atmosphere model of relevance to the ITCZ in the Eastern Pacific. Tellus A, 46(4): 340–350.CrossRefGoogle Scholar
  47. Xu K, Zhu C W, He J H. 2012. Linkage between the dominant modes in Pacific subsurface ocean temperature and the two type ENSO events. Chin. Sci. Bull., 57 (26): 3 491–3 496.CrossRefGoogle Scholar
  48. Yang J L, Liu Q Y, Xie S P et al. 2007. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34 (2): L02708.CrossRefGoogle Scholar
  49. Yeh S W, Kug J S, Dewitte B et al. 2009. El Niño in a changing climate. Nature, 461 (7263): 511–514.CrossRefGoogle Scholar
  50. Yu J Y, Kao H Y. 2007. Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958-2001. J. Geophys. Res., 112 (D13): D13106.CrossRefGoogle Scholar
  51. Yu J Y, Kim S T. 2011. Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24 (3): 708–720.CrossRefGoogle Scholar
  52. Yuan Y, Yan H M. 2013. Different types of La Niña events and different responses of the tropical atmosphere. Chin. Sci. Bull., 58 (3): 406–415.CrossRefGoogle Scholar
  53. Yuan Y, Yang S, Zhang Z Q. 2012. Different evolutions of the philippine sea anticyclone between the eastern and central Pacific El Niño: possible effects of Indian ocean SST. J. Climate, 25 (22): 7 867–7 883.CrossRefGoogle Scholar
  54. Yuan Y, Yang S. 2012. Impacts of different types of El Niño on the East Asian climate: focus on ENSO cycles. J. Climate, 25 (21): 7 702–7 722.CrossRefGoogle Scholar
  55. Zhang R H. 1999. The role of Indian summer Monsoon water vapor transportation on the summer rainfall anomalies in the northern part of China during the El Niño mature phase. Plateau Meterology, 18 (4): 567–574. (in Chinese)Google Scholar
  56. Zhang W J, Jin F F, Li J P et al. 2011. Contrasting impacts of two-type El Niño over the western north Pacific during Boreal Autumn. J. Meteor. Soc. Japan, 89 (5): 563–569.CrossRefGoogle Scholar
  57. Zhao S S, Yang X Q. 2004. Numerical experiments on interaction between the tropical Pacific and the Indian Ocean through the wind-stress “bridge”. Acta Oceanologica Sinica, 26 (4): 33–48. (in Chinese)Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Haibo Hu (胡海波)
    • 1
    • 2
  • Qigang Wu (吴其冈)
    • 1
  • Zepeng Wu (吴泽鹏)
    • 1
    • 3
  1. 1.CMA-NJU Joint Laboratory for Climate Prediction Studies, Instituted for Climate and Global Change Research, School of Atmospheric ScienceNanjing UniversityNanjingChina
  2. 2.Key Laboratory of Meteorological Disaster of Ministry of EducationNanjing University of Information Science and TechnologyNanjingChina
  3. 3.Meteorology Center of Middle South Regional Air Traffic Management Bureau of Civil Aviation of ChinaGuangzhouChina

Personalised recommendations