Skip to main content
Log in

Microbial ecological associations in the surface sediments of Bohai Strait

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Microbial communities play key roles in the marine ecosystem. Despite a few studies on marine microbial communities in deep straits, ecological associations among microbial communities in the sediments of shallow straits have not been fully investigated. The Bohai Strait in northern China (average depth less than 20 m) separates the Bohai Sea from the Yellow Sea and has organic-rich sediments. In this study, in the summer of 2014, six stations across the strait were selected to explore the taxonomic composition of microbial communities and their ecological associations. The four most abundant classes were Gammaproteobacteria, Deltaproteobacteria, Bacilli and Flavobacteriia. Temperature, total carbon, depth, nitrate, fishery breeding and cold water masses influenced the microbial communities, as suggested by representational difference and composition analyses. Network analysis of microbial associations revealed that key families included Flavobacteriaceae, Pirellulaceae and Piscirickettsiaceae. Our findings suggest that the families with high phylogenetic diversity are key populations in the microbial association network that ensure the stability of microbial ecosystems. Our study contributes to a better understanding of microbial ecology in complex hydrological environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert R, Jeong H, Barabási A L. 2000. Error and attack tolerance of complex networks. Nature, 406 (6794): 378–382.

    Article  Google Scholar 

  • Barberán A, Bates S T, Casamayor E O, Fierer N. 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J., 6 (2): 343–351.

    Article  Google Scholar 

  • Behbahani R, Hosseinyar G, Lak R. 2015. The controlling parameters on organic matter preservation within the bottom sediments of the northern part of the Persian Gulf. Neues Jahrb. Geol. Paläontol. A bh., 276 (3): 267–283.

    Article  Google Scholar 

  • Bi N S, Yang Z S, Wang H J, Fan D J, Sun X X, Lei K. 2011. Seasonal variation of suspended-sediment transport through the southern Bohai Strait. Estuar. Coast. Shelf Sci., 93 (3): 239–247.

    Article  Google Scholar 

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U. 2006. Complex networks: structure and dynamics. Physics Reports, 424 (4–5): 175–308.

    Article  Google Scholar 

  • Bowman J P. 2006. The marine clade of the family flavobacteriaceae: the genera aequorivita, arenibacter, cellulophaga, croceibacter, formosa, gelidibacter, gillisia, maribacter, mesonia, muricauda, polaribacter, psychroflexus, psychroserpens, robiginitalea, salegentibacter, tenacibaculum, ulvibacter, vitellibacter and zobellia. In:Dworkin M, Falkow S, Rosenberg E, Schleifer K H, Stackebrandt E eds. The Prokaryotes: Volume 7: Proteobacteria: Delta, Epsilon Subclass. Springer, New York. p.677-694.

  • Buttigieg P L, Ramette A. 2015. Biogeographic patterns of bacterial microdiversity in Arctic deep-sea sediments (HAUSGARTEN, Fram Strait). Front. Microbiol., 5: 660.

    Article  Google Scholar 

  • Campbell B J, Kirchman D L. 2013. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J., 7 (1): 210–220.

    Article  Google Scholar 

  • Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knights R, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods, 7 (5): 335–336.

    Article  Google Scholar 

  • Chaffron S, Rehrauer H, Pernthaler J, von Mering C. 2010. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Research, 20 (7): 947–959.

    Article  Google Scholar 

  • Coutinho F H, Meirelles P M, Moreira A P B, Paranhos R P, Dutilh B E, Thompson F L. 2015. Niche distribution and influence of environmental parameters in marine microbial communities: a systematic review. PeerJ, 3: e1008.

    Article  Google Scholar 

  • Coveley S, Elshahed M S, Youssef N H. 2015. Response of the rare biosphere to environmental stressors in a highly diverse ecosystem (Zodletone spring, OK, USA). PeerJ, 3: e1182.

    Article  Google Scholar 

  • Dixon J L, Osburn C L, Paerl H W, Peierls B L. 2014. Seasonal changes in estuarine dissolved organic matter due to variable flushing time and wind-driven mixing events. Estuar. Coast Shelf S ci., 151: 151–210.

    Google Scholar 

  • Dixon P. 2003. VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14 (6): 927–930.

    Article  Google Scholar 

  • Edgar R C, Haas B J, Clemente J C, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27 (16): 2 194–2 200.

    Article  Google Scholar 

  • Edgar R C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26 (19): 2 460–2 461.

    Article  Google Scholar 

  • Elsabé M J, Brüchert V, Fuchs B M. 2012. Vertical shifts in the microbial community structure of organic-rich Namibian shelf sediments. African Journal of Microbiology Research, 6 (17): 3 887–3 897.

    Google Scholar 

  • Faust K, Raes J. 2012. Microbial interactions: from networks to models. Nat. Rev. Microbiol., 10 (8): 538–550.

    Article  Google Scholar 

  • Freilich S, Kreimer A, Meilijson I, Gophna U, Sharan R, Ruppin E. 2010. The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Research, 38 (12): 3 857–3 868.

    Article  Google Scholar 

  • Fryer J L, Hedrick R P. 2003. Piscirickettsia salmonis: a Gramnegative intracellular bacterial pathogen of fish. J. Fish Dis., 26 (5): 251–262.

    Article  Google Scholar 

  • Fuhrman J A. 2009. Microbial community structure and its functional implications. Nature, 459 (7244): 193–199.

    Article  Google Scholar 

  • Guan X Y, Zhu L L, Li Y X, Xie Y X, Zhao M Z, Luo X M. 2014. Composition and variation of sediment bacterial and nirS-harboring bacterial communities at representative sites of the Bohai Gulf coastal zone, China. World J. Microb iol. Biot echnol., 30 (4): 1 291–1 300.

    Article  Google Scholar 

  • Hibbing M E, Fuqua C, Parsek M R, Peterson S B. 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nature Reviews Microbiology, 8 (1): 15–25.

    Article  Google Scholar 

  • Jacob M, Soltwedel T, Boetius A, Ramette A. 2013. Biogeography of deep-sea benthic bacteria at regional scale (LTER HAUSGARTEN, Fram Strait, Arctic). PLoS One, 8 (9): e72779.

    Article  Google Scholar 

  • Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2017. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research, 45 (D1): D353–D361.

    Article  Google Scholar 

  • Korneeva V A, Pimenov N V, Krek A V, Tourova T P, Bryukhanov A L. 2015. Sulfate-reducing bacterial communities in the water column of the Gdansk Deep (Baltic Sea). Microbiology, 84 (2): 268–277.

    Article  Google Scholar 

  • Langille M G I, Zaneveld J, Caporaso J G, McDonald D, Knights D, Reyes J A, Clemente J C, Burkepile D E, Vega Thurber R L, Knight R, Beiko R G, Huttenhower C. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotech., 31 (9): 814–821.

    Article  Google Scholar 

  • Lennon J T, Aanderud Z T, Lehmkuhl B K, Schoolmaster D R Jr. 2012. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology, 93 (8): 1 867–1 879.

    Article  Google Scholar 

  • Li G X, Han X B, Yue S H, Wen G Y, Yang R M, Kusky T M. 2006. Monthly variations of water masses in the East China Seas. Cont. Shelf Res., 26 (16): 1 954–1 970.

    Article  Google Scholar 

  • Li Y F, Wolanski E, Zhang H. 2015. What processes control the net currents through shallow straits? A review with application to the Bohai Strait, China. Estuar. Coast. Shelf S ci., 158: 1–11.

    Article  Google Scholar 

  • Liu J W, Liu X S, Wang M, Qiao Y L, Zheng Y F, Zhang X H. 2015. Bacterial and archaeal communities in sediments of the North Chinese marginal seas. Microbial. Ecol., 70 (1): 105–117.

    Article  Google Scholar 

  • Louvado A, Gomes N C M, Simões M M Q, Almeida A, Cleary D F R, Cunha A. 2015. Polycyclic aromatic hydrocarbons in deep sea sediments: microbe–pollutant interactions in a remote environment. Sci. Total Env ron., 526: 526–312.

    Google Scholar 

  • Lupatini M, Suleiman A K A, Jacques R J S, Antoniolli Z I, de Siqueira Ferreira A, Kuramae E E, Roesch L F W. 2014. Network topology reveals high connectance levels and few key microbial genera within soils. Front. Env ron. Sci., 2: 10.

    Google Scholar 

  • Macalady J L, Dattagupta S, Schaperdoth I, Jones D S, Druschel G K, Eastman D. 2008. Niche differentiation among sulfur-oxidizing bacterial populations in cave waters. ISME J., 2 (6): 590–601.

    Article  Google Scholar 

  • Marshall S H, Gómez F A, Klose K E. 2014. The Genus Piscirickettsia. In: Rosenberg E, DeLong E F, Lory S, Stackebrandt E, Thompson F eds. The Prokaryotes: Gammaproteobacteria. Springer, Berlin Heidelberg. p.565-573.

  • Maruyama A, Honda D, Yamamoto H, Kitamura K, Higashihara T. 2000. Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. Int. J. Syst. Evol. Microbiol., 50 (2): 835–846.

    Article  Google Scholar 

  • Molloy S. 2014. Environmental microbiology: disentangling syntrophy. Nature Reviews Microbiology, 12 (1): 7.

    Google Scholar 

  • Mu F H, Somerfield P J, Warwick R M, Zhang Z N. 2002. Large-scale spatial patterns in the community structure of benthic harpacticoid copepods in the Bohai Sea, China. The Raffles Bulletin of Zoology, 50 (1): 17–26.

    Google Scholar 

  • Na H, Lever M A, Kjeldsen K U, Schulz F, Jørgensen B B. 2015. Uncultured Desulfobacteraceae and crenarchaeotal group C3 incorporate 13 C-acetate in coastal marine sediment. Environ. Microbiol. Rep., 7 (4): 614–622.

    Article  Google Scholar 

  • Naimie C E, Blain C A, Lynch D R. 2001. Seasonal mean circulation in the Yellow Sea—a model-generated climatology. Cont. Shelf Res., 21 (6–7): 667–695.

    Article  Google Scholar 

  • Nemergut D R, Schmidt S K, Fukami T, O'Neill S P, Bilinski T M, Stanish L F, Knelman J E, Darcy J L, Lynch R C, Wickey P, Ferrenberg S. 2013. Patterns and processes of microbial community assembly. Microbiology and Molecular Biology Reviews, 77 (3): 342–356.

    Article  Google Scholar 

  • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. 1999. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 27 (1): 29–34.

    Article  Google Scholar 

  • Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, Bork P, Goto S, Kanehisa M. 2008. KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Research, 36 (S2): W423–W426.

    Article  Google Scholar 

  • Piontek J, Sperling M, Nöthig E M, Engel A. 2015. Multiple environmental changes induce interactive effects on bacterial degradation activity in the Arctic Ocean. Limnology and Oceanography, 60 (4): 1 392–1 410.

    Article  Google Scholar 

  • Pontarp M, Canbäck B, Tunlid A, Lundberg P. 2012. Phylogenetic analysis suggests that habitat filtering is structuring marine bacterial communities across the globe. Microbial. Ecol., 64 (1): 8–17.

    Article  Google Scholar 

  • Pujalte M J, Lucena T, Ruvira M A, Arahal D R, Macián M C. 2014. The family rhodobacteraceae. In: Rosenberg E, DeLong E F, Lory S, Stackebrandt E, Thompson F eds. The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer, Berlin Heidelberg. p.439-512.

  • Sakala R M, Hayashidani H, Kato Y, Kaneuchi C, Ogawa M. 2002. Isolation and characterization of Lactococcus piscium strains from vacuum-packaged refrigerated beef. Journal of Applied Microbiology, 92 (1): 173–179.

    Article  Google Scholar 

  • Signori C N, Thomas F, Enrich-Prast A, Pollery R C G, Sievert S M. 2014. Microbial diversity and community structure across environmental gradients in Bransfield Strait, Western Antarctic Peninsula. Front. Microbiol., 5: 647.

    Article  Google Scholar 

  • Smoot M E, Ono K, Ruscheinski J, Wang P L, Ideker T. 2011. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27 (3): 431–432.

    Article  Google Scholar 

  • Wang H, Wang B, Dong W W, Hu X K. 2016. Co-acclimation of bacterial communities under stresses of hydrocarbons with different structures. Sci. Rep., 6: 34 588.

    Article  Google Scholar 

  • Wang L P, Liu L S, Zheng B H, Zhu Y Z, Wang X. 2013. Analysis of the bacterial community in the two typical intertidal sediments of Bohai Bay, China by pyrosequencing. Mar. Pollut. Bull., 72 (1): 181–187.

    Article  Google Scholar 

  • Wang L P, Zheng B H, Lei K. 2015. Diversity and distribution of bacterial community in the coastal sediments of Bohai Bay, China. Acta Oceanologica Sinica, 34 (10): 122–131.

    Article  Google Scholar 

  • Wang L P, Zheng B H, Nan B X, Hu P L. 2014. Diversity of bacterial community and detection of nir S-and nir Kencoding denitrifying bacteria in sandy intertidal sediments along Laizhou Bay of Bohai Sea, China. Mar. Pollut. Bull., 88 (1–2): 215–223.

    Article  Google Scholar 

  • Wu H B, Guo Y T, Wang G H, Dai S K, Li X. 2011. Composition of bacterial communities in deep-sea sediments from the South China Sea, the Andaman Sea and the Indian Ocean. African Journal of Microbiology Research, 5 (29): 5 273–5 283.

    Google Scholar 

  • Zhang J J, Kobert K, Flouri T, Stamatakis A. 2014. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics, 30 (5): 614–620.

    Article  Google Scholar 

  • Zhang J, Yu Z G, Raabe T, Liu S M, Starke A, Zou L, Gao H W, Brockmann U. 2004. Dynamics of inorganic nutrient species in the Bohai seawaters. J. Mar. Syst., 44 (3–4): 189–212.

    Article  Google Scholar 

  • Zhang X M, Liu W, Schloter M, Zhang G M, Chen Q S, Huang J H, Li L H, Elser J J, Han X G. 2013. Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes. PLoS One, 8 (10): e76500.

    Article  Google Scholar 

  • Zheng B H, Wang L P, Liu L S. 2014. Bacterial community structure and its regulating factors in the intertidal sediment along the Liaodong Bay of Bohai Sea, China. Microbiol. Res., 169 (7–8): 585–592.

    Article  Google Scholar 

Download references

Acknowledgement

The manuscript was kindly revised by Dr. Shiliang Anthony Liu from Louisiana State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoke Hu  (胡晓珂).

Additional information

Supported by the Strategic Priority Research Program of Chinese Academic of Sciences (No. XDA1102040303) and the National Basic Research Program of China (973 Program) (No. 2015CB453300)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Liu, H., Tang, H. et al. Microbial ecological associations in the surface sediments of Bohai Strait. J. Ocean. Limnol. 36, 795–804 (2018). https://doi.org/10.1007/s00343-018-6289-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-018-6289-4

Keyword

Navigation