Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 1, pp 4–19 | Cite as

The IOD-ENSO precursory teleconnection over the tropical Indo-Pacific Ocean: dynamics and long-term trends under global warming

  • Dongliang Yuan (袁东亮)
  • Xiaoyue Hu (胡晓悦)
  • Peng Xu (徐鹏)
  • Xia Zhao (赵霞)
  • Yukio Masumoto
  • Weiqing Han (韩卫清)
Article

Abstract

The dynamics of the teleconnection between the Indian Ocean Dipole (IOD) in the tropical Indian Ocean and El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean at the time lag of one year are investigated using lag correlations between the oceanic anomalies in the southeastern tropical Indian Ocean in fall and those in the tropical Indo-Pacific Ocean in the following winter-fall seasons in the observations and in high-resolution global ocean model simulations. The lag correlations suggest that the IOD-forced interannual transport anomalies of the Indonesian Throughflow generate thermocline anomalies in the western equatorial Pacific Ocean, which propagate to the east to induce ocean-atmosphere coupled evolution leading to ENSO. In comparison, lag correlations between the surface zonal wind anomalies over the western equatorial Pacific in fall and the Indo-Pacific oceanic anomalies at time lags longer than a season are all insignificant, suggesting the short memory of the atmospheric bridge. A linear continuously stratified model is used to investigate the dynamics of the oceanic connection between the tropical Indian and Pacific Oceans. The experiments suggest that interannual equatorial Kelvin waves from the Indian Ocean propagate into the equatorial Pacific Ocean through the Makassar Strait and the eastern Indonesian seas with a penetration rate of about 10%–15% depending on the baroclinic modes. The IOD-ENSO teleconnection is found to get stronger in the past century or so. Diagnoses of the CMIP5 model simulations suggest that the increased teleconnection is associated with decreased Indonesian Throughflow transports in the recent century, which is found sensitive to the global warming forcing.

Keywords

Indian Ocean Dipole (IOD) El Niño-Southern Oscillation (ENSO) oceanic channel Indonesian Throughflow ENSO predictability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander M A, Bladé I, Newman M, Lanzante J R, Lau N C, Scot J D. 2002. The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Climate, 15 (16): 2205–2231.CrossRefGoogle Scholar
  2. Annamalai H, Xie S P, McCreary J P, Murtugudde R. 2005. Impact of Indian Ocean sea surface temperature on developing El Niño. J. Climate, 18 (2): 302–319.CrossRefGoogle Scholar
  3. Behera S K, Luo J J, Masson S, Rao S A, Sakuma H, Yamagata T. 2006. A CGCM study on the interaction between IOD and ENSO. J. Climate, 19 (9): 1688–1705.CrossRefGoogle Scholar
  4. Behera S K, Yamagata T. 2003. Influence of the Indian Ocean dipole on the southern oscillation. J. Meteor. Soc. Jpn., 81 (1): 169–177.CrossRefGoogle Scholar
  5. Bleck R. 2002. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4 (1): 55–88.CrossRefGoogle Scholar
  6. Clarke A J, Gorder S V. 2003. Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys. Res. Lett., 30 (7): 1399, https://doi.org/10.1029/2002GL016673.CrossRefGoogle Scholar
  7. Drushka K, Sprintall J, Gille S T, Brodjonegoro I. 2010. Vertical structure of kelvin waves in the Indonesian throughflow exit passages. J. Phys. Oceanogr., 40 (9): 1965–1987.CrossRefGoogle Scholar
  8. Halliwell G, Bleck R, Chassignet E. 1998. Atlantic Ocean simulations performed using a new hybrid-coordinate ocean model. In EOS Transactions, American Geophysical Union (AGU), Fall 1998 Meeting, San Francisco, CA.Google Scholar
  9. Izumo T, Lengaigne M, Vialard J, Luo J J, Yamagata T, Madec G. 2014. Influence of Indian Ocean dipole and pacific recharge on following year’s El Niño: interdecadal robustness. Climate Dyn., 42 (1-2): 291–310.CrossRefGoogle Scholar
  10. Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera S K, Luo J J, Cravatte S, Masson S, Yamagata T. 2010. Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat. Geosci., 3 (3): 168–172.CrossRefGoogle Scholar
  11. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc., 77 (3): 437–471.CrossRefGoogle Scholar
  12. Kaplan A, Cane M A, Kushnir Y, Clement A C, Blumenthal M B, Rajagopalan B. 1998. Analyses of global sea surface temperature 1856-1991. J. Geophy. Res., 103 (C9): 18567–18589.CrossRefGoogle Scholar
  13. Klein S A, Soden B J, Lau N C. 1999. Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J. Climate, 12 (4): 917–932.CrossRefGoogle Scholar
  14. Kug J S, Li T, An S I, Kang I S, Luo J J, Masson S, Yamagata T. 2006. Role of the ENSO-Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys. Res. Lett., 33 (9): L09710, https://doi.org/10.1029/2005GL024916.CrossRefGoogle Scholar
  15. Lau N C, Leetmaa A, Nath M J, Wang H L. 2005. Influences of ENSO-induced Indo-western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer. J. Climate, 18 (15): 2922–2942.CrossRefGoogle Scholar
  16. Lau N C, Nath M J. 2003. Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16 (1): 3–20.CrossRefGoogle Scholar
  17. Luo J J, Zhang R C, Behera S K, Masumoto Y, Jin F F, Lukas R, Yamagata T. 2010. Interaction between El Niño and Extreme Indian Ocean Dipole. J. Climate, 23 (3): 726–742.CrossRefGoogle Scholar
  18. Masumoto Y, Sasaki H, Kagimoto T, Komori N, Ishida A, Sasai Y, Miyama T, Motoi T, Mitsudera H, Takahashi K, Sakuma H, Yamagata T. 2004. A fifty-year eddy-resolving simulation of the world ocean—preliminary outcomes of OFES (OGCM for the Earth Simulator). J. Earth Simulator, 1: 35–56.Google Scholar
  19. McCreary Jr J P. 1984. Equatorial beams. J. Mar. Res., 42 (2): 395–430.CrossRefGoogle Scholar
  20. Meehl G A, Bony S. 2011. Introduction to CMIP5. Clivar Exchanges, 16 (2): 4–5.Google Scholar
  21. Molcard R, Fieux M, Syamsudin F. 2001. The throughflow within Ombai Strait. Deep Sea Res. Part I Oceanogr. Res. Papers, 48 (5): 1237–1253.CrossRefGoogle Scholar
  22. Moore D W, McCreary J P. 1990. Excitation of intermediatefrequency equatorial waves at a western ocean boundary: with application to observations from the Indian Ocean. J. Geophys. Res., 95 (C4): 5219–5231.CrossRefGoogle Scholar
  23. Pujiana K, Gordon A L, Sprintall J, Susanto R D. 2009. Intraseasonal variability in the Makassar strait thermocline. J. Mar. Res., 67 (6): 757–777.CrossRefGoogle Scholar
  24. Rayner N A, Parker D E, Horton E B, Folland C K, Alexander L V, Rowell D P, Kent E C, Kaplan A. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 (D14): 4407, https://doi.org/10.1029/2002JD002670.CrossRefGoogle Scholar
  25. Saji N H, Goswami B N, Vinayachandran P N, Yamagata T. 1999. A dipole mode in the tropical Indian Ocean. Nature, 401 (6751): 360–363.Google Scholar
  26. Slutz R J, Lubker S J, Hiscox J D, WoodruffS D, Jenne R L, Joseph D H, Steurer P M, Elms J D. 1985. Comprehensive Ocean-Atmosphere Data Set: Release 1. NOAA Environmental Research Laboratories, Climate Research Program, Boulder, Colorado. 268p.Google Scholar
  27. Smith T M, Reynolds R W, Peterson T C, Lawrimore J. 2008. Improvements to NOAA’s historical merged Land-Ocean surface temperature analysis (1880-2006). J. Climate, 21 (10): 2283–2296.CrossRefGoogle Scholar
  28. Susanto R D, Ffield A, Gordon A L, Adi T R. 2012. Variability of Indonesian throughflow within Makassar Strait, 2004-2009. J. Geophys. Res., 117 (C9): C09013, https://doi. org/10.1029/2012JC008096.CrossRefGoogle Scholar
  29. Trenary L L, Han W Q. 2012. Intraseasonal-to-interannual variability of South Indian Ocean sea level and thermocline: remote versus local forcing. J. Phys. Oceanogr., 42 (4): 602–627.CrossRefGoogle Scholar
  30. Trenary L L, Han W Q. 2013. Local and remote forcing of decadal sea level and thermocline depth variability in the south Indian Ocean. J. Geophys. Res., 118 (1): 381–398, https://doi.org/10.1029/2012JC008317.CrossRefGoogle Scholar
  31. White W B. 1995. Design of a global observing system for gyre-scale upper ocean temperature variability. Prog. Oceanogr., 36 (3): 169–217.CrossRefGoogle Scholar
  32. Wu G X, Meng W. 1998. Gearing between the Indo-monsoon Circulation and the Pacific-Walker Circulation and the ENSO Part I: data analyses. Sci. Atmos. Sinica, 22 (4): 470–480. (in Chinese with English abstract)Google Scholar
  33. Wu R G, Kirtman B P. 2004. Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J. Climate, 17 (20): 4019–4031.CrossRefGoogle Scholar
  34. Xu T F, Yuan D L, Yu Y Q, Zhao X. 2013. An assessment of Indo-Pacific oceanic channel dynamics in the FGOALS-g2 coupled climate system model. Adv. Atmos. Sci., 30 (4): 997–1016, https://doi.org/10.1007/s00376-013-2131-2.CrossRefGoogle Scholar
  35. Xu T F, Yuan D L. 2015. Why does the IOD-ENSO teleconnection disappear in some decades? Chin. J. Oceanol. Limnol., 33 (2): 534–544, https://doi.org/10.1007/s00343-015-4044-7.CrossRefGoogle Scholar
  36. Yuan D L, Han W Q. 2006. Roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. J. Phys. Oceanogr., 36 (5): 930–944.CrossRefGoogle Scholar
  37. Yuan D L, Wang J, Xu T F, Xu P, Hui Z, Zhao X, Luan Y H, Zheng W P, Yu Y Q. 2011. Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: roles of the Indonesian throughflow. J. Climate, 24 (14): 3593–3608.CrossRefGoogle Scholar
  38. Yuan D L, Xu P, Xu T F. 2017. Climate variability and predictability associated with the Indo-Pacific Oceanic channel dynamics in the CCSM4 coupled system model. Chin. J. Oceanol. Limnol., 35 (1): 23–28, https://doi.org/10.1007/s00343-016-5178-y.CrossRefGoogle Scholar
  39. Yuan D L, Zhou H, Zhao X. 2013. Interannual climate variability over the tropical Pacific Ocean induced by the Indian Ocean dipole through the Indonesian throughflow. J. Climate, 26 (9): 2845–2861.CrossRefGoogle Scholar
  40. Zhou Q, Duan W S, Mu M, Feng R. 2015. Influence of positive and negative Indian Ocean Dipoles on ENSO via the Indonesian Throughflow: results from sensitivity experiment. Adv. Atmos. Sci., 32 (6): 783–793.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dongliang Yuan (袁东亮)
    • 1
    • 2
    • 3
  • Xiaoyue Hu (胡晓悦)
    • 1
    • 2
  • Peng Xu (徐鹏)
    • 1
    • 2
  • Xia Zhao (赵霞)
    • 1
  • Yukio Masumoto
    • 4
  • Weiqing Han (韩卫清)
    • 5
  1. 1.Key Laboratory of Ocean Circulation and Waves (KLOCW), and Institute of OceanologyChinese Academy of Sciences, and Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Qingdao Collaborative Innovation Center of Marine Science and TechnologyQingdaoChina
  4. 4.University of TokyoTokyoJapan
  5. 5.Department of Atmospheric and Oceanic SciencesUniversity of ColoradoBoulder, ColoradoUSA

Personalised recommendations