Journal of Oceanology and Limnology

, Volume 36, Issue 2, pp 572–586 | Cite as

A comparison between benthic gillnet and bottom trawl for assessing fish assemblages in a shallow eutrophic lake near the Changjiang River estuary

  • Yalei Li (李亚雷)
  • Qigen Liu (刘其根)
  • Liping Chen (陈丽平)
  • Liangjie Zhao (赵良杰)
  • Hao Wu (吴昊)
  • Liqiao Chen (陈立侨)
  • Zhongjun Hu (胡忠军)
Aquaculture and Fisheries
  • 42 Downloads

Abstract

Two fishing methods including gillnetting and trawling to estimate attributes of fish assemblage were compared in Dianshan Lake from August 2009 to July 2010. Species composition differed significantly between the gears, with four significant contributors in gillnet catches and one in trawl catches. Trawling collected more proportions of benthic species by number and biomass than gillnetting. Size distribution was significantly influenced by fishing technique; gillnetting captured relatively less small-sized fishes and trawling captured less large-sized individuals. Trawling produced species richness closer to the one expected than gillnetting. On the whole, trawl catch was a quadratic polynomial function of gillnet catch and a significantly negative correlation was found between them, both of which varied as different polynomial functions of temperature. However, trawl and gillnet catches were significantly correlated only in one of five month groups. It is concluded that single-gear-based surveys can be misleading in assessments of attributes of fish assemblages, bottom trawling is a more effective gear for assessing fish diversity than benthic gillnetting, and using gillnet catches as an indicator of fish density depends on fishing season in the lake.

Keyword

fishing gear expected species richness size structure catch per unit effort temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

343_2018_6219_MOESM1_ESM.pdf (473 kb)
Supplementary material, approximately 228 KB.

References

  1. Achleitner D, Gassner H, Luger M. 2012. Comparison of three standardised fish sampling methods in 14 alpine lakes in Austria. Fish. Manag e. Ecol., 19 (4): 352–361.CrossRefGoogle Scholar
  2. Aho K, Roberts D W, Weaver T. 2008. Using geometric and non-geometric internal evaluators to compare eight vegetation classification methods. J. Veg. Sci., 19 (4): 549–562.CrossRefGoogle Scholar
  3. Bethke E, Arrhenius F, Cardinale M, Håkansson N. 1999. Comparison of the selectivity of three pelagic sampling trawls in a hydroacoustic survey. Fish. Res., 44 (1): 15–23.CrossRefGoogle Scholar
  4. Bobori D C, Salvarina I. 2010. Seasonal variation of fish abundance and biomass in gillnet catches of an East Mediterranean lake: Lake Doirani. J. Environ. Biol., 31 (6): 995–1000.Google Scholar
  5. Bonar S A, Hubert W A, Willis D W. 2009. Standard Methods for Sampling North American Freshwater Fishes. American Fisheries Society, Bethesda, Maryland.Google Scholar
  6. Casado P, Cutillas P R. 2011. A self-validating quantitative mass spectrometry method for assessing the accuracy of high-content phosphoproteomic experiments. Mol. Cell. Proteomics., 10(1): M110.003079.Google Scholar
  7. Chen Y Y. 1998. Fauna Sinica, Osteichthyes, Cypriniformes II. Science Press, Beijing, China. (in Chinese)Google Scholar
  8. Clarke K R, Gorley R N. 2001. PRIMER Version 5.0: User Manual/Tutorial. PRIMER-E Ltd, Plymouth, UK.Google Scholar
  9. Clement T A, Pangle K, Uzarski D G, Murry B A. 2014. Effectiveness of fishing gears to assess fish assemblage size structure in small lake ecosystems. Fish. Manag e. Ecol., 21 (3): 211–219.CrossRefGoogle Scholar
  10. Colwell R K. 2013. EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and Application. Persistent URL<purl.oclc.org./estimates>.Google Scholar
  11. Dahm E, Hartman J, Jurvelius J, Löffler H, Völzke V. 1992. Review of the European Inland Fisheries Advisory Commission (EIFAC) experiments on stock assessment in lakes. J. Appl. Ichthyol., 8 (1-4): 1–9.CrossRefGoogle Scholar
  12. Deceliere-Vergès C, Guillard J. 2008. Assessment of the pelagic fish populations using CEN multi-mesh gillnets: consequences for the characterization of the fish communities. Knowl. Managt. Aquatic Ecosyst., 389 (4): 1–16.Google Scholar
  13. Dennerline D E, Jennings C A, Degan D J. 2012. Relationships between hydroacoustic derived density and gill net catch: implications for fish assessments. Fish. Res., 123-124: 78–89.CrossRefGoogle Scholar
  14. Dufrêne M, Legendre P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr., 67 (3): 345–366.Google Scholar
  15. East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Science, Shanghai Fisheries Research Institute. 1990. The Fishes of Shanghai Area. Shanghai Scientific and Technical Publishers, Shanghai. (in Chinese)Google Scholar
  16. Elliott J M, Fletcher J M. 2001. A comparison of three methods for assessing the abundance of Arctic charr, Salvelinus alpinus, in Windermere (northwest England). Fish. Res., 53(1): 39–46.CrossRefGoogle Scholar
  17. Eros T, Specziár A, Bíró P. 2009. Assessing fish assemblages in reed habitats of a large shallow lake—a comparison between gillnetting and electric fishing. Fish. Res., 96 (1): 70–76.CrossRefGoogle Scholar
  18. Growns I O, Pollard D A, Harris J H. 1996. A comparison of electric fishing and gillnetting to examine the effects of anthropogenic disturbance on riverine fish communities. Fish. Manage. Ecol., 3 (1): 13–24.CrossRefGoogle Scholar
  19. Halkidi M, Batistakis Y, Vazirgiannis M. 2001. On clustering validation techniques. J. Intell. Inf. Syst., 17 (2-3): 107–145.CrossRefGoogle Scholar
  20. Hamley J M. 1975. Review of gillnet selectivity. Journal of the Fisheries Research Board of Canada, 32 (11): 1943–1969.CrossRefGoogle Scholar
  21. Hansson S, Rudstam L G. 1995. Gillnet catches as an estimate of fish abundance: a comparison between vertical gillnet catches and hydroacoustic abundances of Baltic Sea herring (Clupea harengus) and sprat (Sptattus sptattus). Can. J. Fish. Aquat. Sci., 52 (1): 75–83.CrossRefGoogle Scholar
  22. Huse I, Løkkeborg S, Soldal A V. 2000. Relative selectivity in trawl, longline and gillnet fisheries for cod and haddock. ICES. J. Mar. Sci., 57 (4): 1271–1282.CrossRefGoogle Scholar
  23. Jurvelius J, Kolari I, Leskelä A. 2011. Quality and status of fish stocks in lakes: gillnetting, seining, trawling and hydroacoustics as sampling methods. Hydrobiologia, 660 (1): 29–36.CrossRefGoogle Scholar
  24. Kubecka J, Hohausová E, Matena J, Peterka J, Amarasinghe U S, Bonar S A, Hateley J, Hickley P, Suuronen P, Tereschenko V, Welcomme R, Winfield I J. 2009. The true picture of a lake or reservoir fish stock: a review of needs and progress. Fish. Res., 96 (1): 1–5.CrossRefGoogle Scholar
  25. Lapointe N W R, Corkum L D, Mandrak N E. 2006. A comparison of methods for sampling fish diversity in shallow offshore waters of large rivers. N orth Am. J. Fish. Manage., 26 (3): 503–513.CrossRefGoogle Scholar
  26. Linløkken A, Haugen T O. 2006. Density and temperature dependence of gill net catch per unit effort for perch, Perca fluviatilis, and roach, Rutilus rutilus. Fish. Manage. Ecol., 13 (4): 261–269.CrossRefGoogle Scholar
  27. Mehner T, Schulz M. 2002. Monthly variability of hydroacoustic fish stock estimates in a deep lake and its correlation to gillnet catches. J. Fish. Biol., 61 (5): 1109–1121.CrossRefGoogle Scholar
  28. Moreno C E, Halffter G. 2000. Assessing the completeness of bat biodiversity inventories using species accumulation curves. J. Appl. Ecol., 37 (1): 149–158.CrossRefGoogle Scholar
  29. Neumann R M, Willis D W. 1995. Seasonal variation in gillnet sample indexes for northern pike collected from a glacial prairie lake. N orth Am. J. Fish. Manage., 15 (4): 838–844.CrossRefGoogle Scholar
  30. Olin M, Kurkilahti M, Peitola P, Ruuhijärvi J. 2004. The effects of fish accumulation on the catchability of multimesh gillnet. Fish. Res., 68 (1-3): 135–147.CrossRefGoogle Scholar
  31. Olin M, Malinen T. 2003. Comparison of gillnet and trawl in diurnal fish community sampling. Hydrobiologia, 506 (1-3): 443–449.CrossRefGoogle Scholar
  32. Olin M, Malinen T, Ruuhijärvi J. 2009. Gillnet catch in estimating the density and structure of fish community— comparison of gillnet and trawl samples in a eutrophic lake. Fish. Res., 96 (1): 88–94.CrossRefGoogle Scholar
  33. Olin M, Tiainen J, Kurkilahti M, Rask M, Lehtonen H. 2016. An evaluation of gillnet CPUE as an index of perch density in small forest lakes. Fish. Res., 173: 20–25.CrossRefGoogle Scholar
  34. Peltonen H, Ruuhijärvi J, Malinen T, Horppila J. 1999. Estimation of roach (Rutilus rutilus (L.)) and smelt (Osmerus eperlanus (L.)) stocks with virtual population analysis, hydroacoustics and gillnet CPUE. Fish. Res., 44 (1): 25–36.CrossRefGoogle Scholar
  35. Pope K L, Willis D W. 1996. Seasonal influences on freshwater fisheries sampling data. Rev. Fish. Sci., 4 (1): 57–73.CrossRefGoogle Scholar
  36. Prchalová M, Kubečka J, Říha M, Litvín R, Čech M, Frouzová J, Hladík M, Hohausová E, Peterka J, Vašek M. 2008. Overestimation of percid fishes (Percidae) in gillnet sampling. Fish. Res., 91 (1): 79–87.CrossRefGoogle Scholar
  37. Prchalová M, Kubečka J, Ríha M, Mrkvicka T, Vašek M, Juza T, Kratochvíl M, Peterka J, Draštík V, Krížek J. 2009. Size selectivity of standardized multimesh gillnets in sampling coarse European species. Fish. Res., 96(1): 51–57.CrossRefGoogle Scholar
  38. Prchalová M, Mrkvička T, Kubecka J, Peterka J, Čech M, Muška M, Kratochvíl M, Vašek M. 2010. Fish activity as determined by gillnet catch: a comparison of two reservoirs of different turbidity. Fish. Res., 102(3): 291–296.CrossRefGoogle Scholar
  39. Prchalová M, Mrkvička T, Peterka J, Čech M, Berec L, Kubecka J. 2011. A model of gillnet catch in relation to the catchable biomass, saturation, soak time and sampling period. Fish. Res., 107 (1-3): 201–209.CrossRefGoogle Scholar
  40. Prchalová M, Neal J W, Muñoz-Hincapié M, Juza T, Ríha M, Peterka J, Kubecka J. 2012. Comparison of gill nets and fixed-frame trawls for sampling threadfin shad in tropical reservoirs. T rans. Am. Fish. Soc., 141 (4): 1151–1160.CrossRefGoogle Scholar
  41. Prchalová M, Kubečka J, Ríha M, Čech M, Jůza T, Ketelaars H A, Kratochvíl M, Mrkvicka T, Peterkaa J, Vašeka M, Wagenvoort A J. 2013. Eel attacks—a new tool for assessing European eel (Anguilla anguilla) abundance and distribution patterns with gillnet sampling. Limnologica, 43 (3): 194–202.CrossRefGoogle Scholar
  42. Quinn G P, Keough M J. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  43. Rotherham D, Johnson D D, Kesby C L, Gray C A. 2012. Sampling estuarine fish and invertebrates with a beam trawl provides a different picture of populations and assemblages than multi-mesh gillnets. Fish. Res., 123-124: 49–55.CrossRefGoogle Scholar
  44. Šmejkal M, Ricard D, Prchalová M, Ríha M, Muška M, Blabolil P, Cech M, Vašek M, Juza T, Monteoliva Herreras A, Encina L, Peterka J, Kubecka J. 2015. Biomass and abundance biases in European standard gillnet sampling. PLoS One, 10 (3): e0122437.CrossRefGoogle Scholar
  45. Tang M, Boisclair D. 1995. Relationship between respiration rate of juvenile brook trout (Salvelinus fontinalis), water temperature, and swimming characteristics. Can. J. Fis h. Aquat. Sci., 52 (10): 2138–2145.CrossRefGoogle Scholar
  46. Tremain D M, Adams D H. 1995. Seasonal variations in species diversity, abundance, and composition of fish communities in the northern Indian River Lagoon, Florida. B ull. Mar. Sci., 57 (1): 171–192.Google Scholar
  47. Van Den Avyle M J, Boxrucker J, Michaletz P, Vondracek B, Ploskey G R. 1995. Comparison of catch rate, length distribution, and precision of six gears used to sample reservoir shad populations. N orth Am. J. Fish. Manage., 15 (4): 940–955.CrossRefGoogle Scholar
  48. Young S S, Chiu T S, Shen S C. 1994. A revision of the family Engraulidae (Pisces) from Taiwan. Zool. Stud., 33 (3): 217–227.Google Scholar
  49. Zweig C L, Kitchens W M. 2008. Effects of landscape gradients on wetland vegetation communities: information for large-scale restoration. Wetlands, 28 (4): 1086–1096.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Yalei Li (李亚雷)
    • 1
  • Qigen Liu (刘其根)
    • 1
  • Liping Chen (陈丽平)
    • 1
  • Liangjie Zhao (赵良杰)
    • 2
  • Hao Wu (吴昊)
    • 3
  • Liqiao Chen (陈立侨)
    • 4
  • Zhongjun Hu (胡忠军)
    • 1
  1. 1.Key laboratory of Freshwater Fishery Germplasm Resources, Ministry of AgricultureShanghai Ocean UniversityShanghaiChina
  2. 2.Xinyang College of Agriculture and ForestryXinyangChina
  3. 3.Nanjing Institute of Environmental ScienceMinistry of Environmental ProtectionNanjingChina
  4. 4.School of Life ScienceEast China Normal UniversityShanghaiChina

Personalised recommendations