Journal of Oceanology and Limnology

, Volume 36, Issue 2, pp 305–316 | Cite as

Net-phytoplankton communities in the Western Boundary Currents and their environmental correlations

  • Yunyan Chen (陈芸燕)
  • Xiaoxia Sun (孙晓霞)
  • Mingliang Zhun (朱明亮)


This study investigated net-phytoplankton biomass, species composition, the phytoplankton abundance horizontal distribution, and the correlations between net-phytoplankton communities and mesoscale structure that were derived from the net samples taken from the Western Boundary Currents during summer, 2014. A total of 199 phytoplankton species belonging to 61 genera in four phyla were identified. The dominant species included Climacodium frauenfeldianum, Thalassiothrix longissima, Rhizosolenia styliformis var. styliformis, Pyrocystis noctiluca, Ceratium trichoceros, and Trichodesmium thiebautii. Four phytoplankton communities were divided by cluster analysis and the clusters were mainly associated with the North Equatorial Counter Current (NECC), the North Equatorial Current (NEC), the Subtropical Counter Current (STCC), and the Luzon Current (LC), respectively. The lowest phytoplankton cell abundance and the highest Trichodesmium filament abundance were recorded in the STCC region. The principal component analysis showed that T. thiebautii preferred warm and nutrient poor water. There was also an increase in phytoplankton abundance and biomass near 5°N in the NECC region, where they benefit from upwellings and eddies.


net-phytoplankton communities Western Boundary Currents upwelling eddies fronts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful to YU Fei for the temperature and salinity data, ZHANG Wenjing for assisting with the chlorophyll concentration analyses and YUAN Yongquan for the nutrients data. We thank the captain and crew of R/V KeXue for their technical and logistical support.


  1. Ahmed A, Kurian, S, Gauns M, Chndrasekhararao A V, Mulla A, Naik B, Naik H, Naqvi S W A. 2016. Spatial variability in phytoplankton community structure along the eastern Arabian Sea during the onset of south-west monsoon. Continental Shelf Research, 119: 30–39.CrossRefGoogle Scholar
  2. Angara E V, Rillon G S, Carmona M L, Ferreras J E M, Vallejo M I, Amper A C G G, Lacuna M L D G. 2013. Diversity and abundance of phytoplankton in Casiguran waters, Aurora Province, Central Luzon, Northern Philippines. AACL Bioflux, 6 (4): 358–377.Google Scholar
  3. Aurivillius C W S. 1898. Vergleichende thiergeographische Untersuchungen über die Plankton-Fauna des Skageraks in den Jahren 1893-1897. K. Svenska Vet. Akad. Handl., 30: 3.Google Scholar
  4. Bibby T S, Moore C M. 2011. Silicate: nitrate ratios of upwelled waters control the phytoplankton community sustained by mesoscale eddies in sub-tropical North Atlantic and Pacific. Biogeosciences, 8 (3): 657–666.CrossRefGoogle Scholar
  5. Bode A, Estévez M G, Varela M, Vilar J A. 2015. Annual trend patterns of phytoplankton species abundance belie homogeneous taxonomical group responses to climate in the NE Atlantic upwelling. Marine Environmental Research, 110: 81–91.CrossRefGoogle Scholar
  6. Breitbarth E, Oschlies A, LaRoche, J. 2007. Physiological constraints on the global distribution of Trichodesmium-effect of temperature on diazotrophy. Biogeosciences, 4 (1): 53–61.CrossRefGoogle Scholar
  7. Brown J S, Werner D. 1978. The biology of diatoms. Botanical Monographs, 13: 626.Google Scholar
  8. Budaev S V. 2010. Using principal components and factor analysis in animal behaviour research: caveats and guidelines. Ethology, 116 (5): 472–480.CrossRefGoogle Scholar
  9. Capone D G, Zehr J P, Paerl H W, Bergman B, Carpenter E J. 1997. Trichodesmium, a globally significant marine cyanobacterium. Science, 276 (5316): 1221–1229.CrossRefGoogle Scholar
  10. Carney R L, Seymour J R, Westhorpe D, Mitrovic, S M. 2016. Lotic bacterioplankton and phytoplankton community changes under dissolved organic-carbon amendment: evidence for competition for nutrients. Marine and Freshwater Research, 67 (9): 1362–1373.CrossRefGoogle Scholar
  11. Carpenter E J, Janson S. 2000. Intracellular cyanobacterial symbionts in the marine diatom Climacodium frauenfeldianum (Bacillariophyceae). Journal of Phycology, 36 (3): 540–544.CrossRefGoogle Scholar
  12. Carpenter E J. 1983. Physiology and ecology of marine plankton Oscillatoria (Trichodesmium). Marine Biology Letters, 4: 69–85.Google Scholar
  13. Chen Y L L, Chen H Y, Lin Y H. 2003. Distribution and downward flux of Trichodesmium in the South China Sea as influenced by the transport from the Kuroshio Current. Marine Ecology Progress Series, 259: 47–57.CrossRefGoogle Scholar
  14. Chesson P. 2000. Mechanisms of maintenance of species diversity. Annual review of Ecology and Systematics, 31: 343–366.CrossRefGoogle Scholar
  15. Christian J R, Murtugudde R, Ballabrera-Poy J, McClain C R. 2004. A ribbon of dark water: phytoplankton blooms in the meanders of the pacific north equatorial countercurrent. Deep Sea Research Part II: Topical Studies in Oceanography, 51 (1-3): 209–228.CrossRefGoogle Scholar
  16. Cleve P T. 1897. A Treatise on the Phytoplankton of the Atlantic and Its Tributaries and on the Periodical Changes of the Plankton of Skagerak. Upsala Nya Tidnings Aktiebolags Tryckeri, Upsala. 27p.Google Scholar
  17. Czerny J M S, Hauss H, Löscher C R, Riebesell U. 2016. Dissolved N:P ratio changes in the eastern tropical North Atlantic: effect on phytoplankton growth and community structure. Marine Ecology Progress Series, 545: 49–62.CrossRefGoogle Scholar
  18. Everett J D, Baird M E, Roughan M, Suthers I M, Doblin M A. 2014. Relative impact of seasonal and oceanographic drivers on surface chlorophyll a along a Western Boundary Current. Progress in Oceanography, 120: 340–351.CrossRefGoogle Scholar
  19. Falkowski P G, Ziemann D, Kolber Z, Bienfang P K. 1991. Role of eddy pumping in enhancing primary production in the ocean. Nature, 352 (6330): 55–58.CrossRefGoogle Scholar
  20. Feng J F. 1991. Composition and distribution of species on phytoplankton in Minnan-Taiwan bank fishing ground. In: Minnan-Taiwan Bank Fishing Ground Upwelling Ecosystem Study. Science Press, Beijing, China. p.397–406.Google Scholar
  21. Gomà J, Rimet F, Cambra J, Hoffmann L, Ector L. 2005. Diatom communities and water quality assessment in Mountain Rivers of the upper Segre basin (La Cerdanya, Oriental Pyrenees). Hydrobiologia, 551 (1): 209–225.CrossRefGoogle Scholar
  22. HallegraeffG M, Jeffrey S W. 1984. Tropical phytoplankton species and pigments of continental shelf waters of north and north-west Australia. Marine ecology Progress Series, 20: 59–74.CrossRefGoogle Scholar
  23. Harsono G, Atmadipoera A S, Syamsudin F, Manurung D, Mulyono S B. 2014. Halmahera Eddy features observed from multisensor satellite oceanography. Asian Journal of Scientific Research, 7 (4): 571–580.CrossRefGoogle Scholar
  24. Hashihama F, Furuya K, Kitajima S, Takeda S, Takemura T, Kanda J. 2009. Macro-scale exhaustion of surface phosphate by dinitrogen fixation in the western North Pacific. Geophysical Research Letters, 36 (3): L03610.CrossRefGoogle Scholar
  25. Hasle G R, Semina H J. 1987. The marine planktonic diatoms Thalassiothrix longissima and Thalassiothrix antarctica with comments on Thalassionema spp. and Synedra reinboldii. Diatom Research, 2 (2): 175–192.CrossRefGoogle Scholar
  26. Higgins H W, Mackey D J, Clementson L. 2006. Phytoplankton distribution in the Bismarck Sea north of Papua New Guinea: the effect of the Sepik River outflow. Deep Sea Research Part I: Oceanographic Research Papers, 53 (11): 1845–1863.CrossRefGoogle Scholar
  27. Hong H S, Wang Y J, Wang D Z. 2011. Response of phytoplankton to nitrogen addition in the Taiwan strait upwelling region: nitrate reductase and glutamine synthetase activities. Continental Shelf Research, 31 (6): S57–S66.CrossRefGoogle Scholar
  28. Hood R R, Coles V J, Capone D G. 2004. Modeling the distribution of Trichodesmium and nitrogen fixation in the Atlantic Ocean. Journal of Geophysical Research: Oceans, 109 (C6): C06006.CrossRefGoogle Scholar
  29. Hu D X, Wu L X, Cai W J, Gupta A S, Ganachaud A, Qiu B, Gordon A L, Lin X P, Chen Z H, Hu S J, Wang G J, Wang Q Y, Sprintall J, Qu T D, Kashino Y, Wang F, Kessler W S. 2015. Pacific western boundary currents and their roles in climate. Nature, 522 (7556): 299–308.CrossRefGoogle Scholar
  30. Hu J Y, Kawamura H, Hong H S, Qi Y Q. 2000. A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion. Journal of Oceanography, 56 (6): 607–624.CrossRefGoogle Scholar
  31. Huang B Q, Hu J, Xu H Z, Cao Z R, Wang D X. 2010. Phytoplankton community at warm eddies in the northern South China Sea in winter 2003/2004. Deep Sea Research Part II: Topical Studies in Oceanography, 57 (19-20): 1792–1798.CrossRefGoogle Scholar
  32. Irwin A J, Finkel Z V, Schofield O M E, Falkowski P G. 2006. Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. Journal of Plankton Research, 28 (5): 459–471.CrossRefGoogle Scholar
  33. Jiang Y J, He W, Liu W X, Qin N, Ouyang H L, Wang Q M, Kong X Z, He Q S, Yang C, Yang B, Xu F L. 2014. The seasonal and spatial variations of phytoplankton community and their correlation with environmental factors in a large eutrophic Chinese lake (Lake Chaohu). Ecological Indicators, 40: 58–67.CrossRefGoogle Scholar
  34. Jiang Z B, Zeng J N, Chen J F, Chen Q Z, Zhang D S, Yan X J. 2015. Diazotrophic cyanobacterium Trichodesmium spp. in China marginal seas: comparison with other global seas. Acta Ecologica Sinica, 35 (2): 37–45.CrossRefGoogle Scholar
  35. Karl D M, Tien G. 1997. Temporal variability in dissolved phosphorus concentrations in the subtropical North Pacific Ocean. Marine Chemistry, 56 (1-2): 77–96.CrossRefGoogle Scholar
  36. Karl D, Letelier R, Tupas L, Dore J, Christian J, Hebel D. 1997. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature, 388 (6642): 533–538.CrossRefGoogle Scholar
  37. Kimura S, Tsukamoto K. 2006. The salinity front in the North Equatorial Current: a landmark for the spawning migration of the Japanese eel (Anguilla japonica) related to the stock recruitment. Deep Sea Research Part II: Topical Studies in Oceanography, 53 (3-4): 315–325.CrossRefGoogle Scholar
  38. Kitajima S, Furuya K, Hashihama F, Takeda S, Kanda J. 2009. Latitudinal distribution of diazotrophs and their nitrogen fixation in the tropical and subtropical western North Pacific. Limnology and Oceanography, 54 (2): 537–547.CrossRefGoogle Scholar
  39. Koslow J A, Pesant S, Feng M, Pearce A, Fearns P, Moore T, Matear R, Waite A. 2008. The effect of the Leeuwin Current on phytoplankton biomass and production offSouthwestern Australia. Journal of Geophysical Research: Oceans, 113 (C7): C07050.CrossRefGoogle Scholar
  40. Kudela R M, Cochlan W P, Dugdale R C. 1997. Carbon and nitrogen uptake response to light by phytoplankton during an upwelling event. Journal of Plankton Research, 19 (5): 609–630.CrossRefGoogle Scholar
  41. Lacuna-Richman C. 2003. Ethnicity and the utilization of nonwood forest products: findings from three Philippine villages. Silva Fennica, 37 (1): 129–148.CrossRefGoogle Scholar
  42. Langlois R J, Hümmer D, LaRoche J. 2008. Abundances and distributions of the dominant nifH phylotypes in the Northern Atlantic Ocean. Applied and Environmental Microbiology, 74 (6): 1922–1931.CrossRefGoogle Scholar
  43. Le Borgne R, Barber R T, Delcroix T, Inoue H Y, Mackey D J, Rodier M. 2002. Pacific warm pool and divergence: temporal and zonal variations on the equator and their effects on the biological pump. Deep Sea Research Part II: Topical Studies in Oceanography, 49 (13-14): 2471–2512.CrossRefGoogle Scholar
  44. Le Borgne R, Rodier M. 1997. Net zooplankton and the biological pump: a comparison between the oligotrophic and mesotrophic equatorial Pacific. Deep Sea Research Part II: Topical Studies in Oceanography, 44 (9-10): 2003–2023.CrossRefGoogle Scholar
  45. Levasseur M, Therriault J C, Legendre L. 1984. Hierarchical control of phytoplankton succession by physical factors. Marine ecology Progress Series, 19: 211–222.CrossRefGoogle Scholar
  46. Lipschultz F, Owens N J P. 1996. An assessment of nitrogen fixation as a source of nitrogen to the North Atlantic Ocean. Biogeochemistry, 35 (1): 261–274.CrossRefGoogle Scholar
  47. Loder J W, Boicourt W C, Simpson J H. 1998. Western ocean boundary shelves, coastal segment (W), in The Sea. In: Brink K H, Robinson A R eds. The Global Coastal Ocean: Regional Studies and Syntheses. John Wiley, New York, USA. 11: 3–27.Google Scholar
  48. Lorenzen C J. 1966. A method for the continuous measurement of in vivo chlorophyll concentration. Deep Sea Research and Oceanographic Abstracts, 13 (2): 223–227.CrossRefGoogle Scholar
  49. Lu G Y, Song X X, Yu Z M, Cao X H, Yuan Y Q. 2015. Environmental effects of modified clay flocculation on Alexandrium tamarense and paralytic shellfish poisoning toxins (PSTs). Chemosphere, 127: 188–194.CrossRefGoogle Scholar
  50. Lukas R, Firing E, Hacker P, Richardson P L, Collins C A, Fine R, Gammon R. 1991. Observations of the Mindanao current during the western equatorial pacific ocean circulation study. Journal of Geophysical Research: Oceans, 96 (C4): 7089–7104.CrossRefGoogle Scholar
  51. Moita M T, Pazos Y, Rocha C, Nolasco R, Oliveira P B. 2016. Toward predicting Dinophysis blooms off NW Iberia: a decade of events. Harmful Algae, 53: 17–32.CrossRefGoogle Scholar
  52. Monteiro P M S, Largier J L. 1999. Thermal stratification in Saldanha Bay (South Africa) and subtidal, density-driven exchange with the coastal waters of the Benguela upwelling system. Estuarine, Coastal and Shelf Science, 49 (6): 877–890.CrossRefGoogle Scholar
  53. Okazaki Y, Nakata H, Kimura S. 2002. Effects of frontal eddies on the distribution and food availability of anchovy larvae in the Kuroshio Extension. Marine and Freshwater Research, 53 (2): 403–410.CrossRefGoogle Scholar
  54. Omura T, Iwataki M, Borja V M, Takayama H, Fukuyo Y. 2012. Marine Phytoplankton of the Western Pacific. Kouseisha Kouseikaku Co., Ltd., Tokyo, Japan. p.25–148.Google Scholar
  55. Pennington J T, Mahoney K L, Kuwahara V S, Kolber D D, Calienes R, Chavez F P. 2006. Primary production in the eastern tropical Pacific: a review. Progress in Oceanography, 69 (2-4): 285–317.CrossRefGoogle Scholar
  56. Pingree R D, Holligan P M, Mardell G T. 1978. The effects of vertical stability on phytoplankton distributions in the summer on the northwest European Shelf. Deep Sea Research, 25 (11): 1011–1016.CrossRefGoogle Scholar
  57. Reid P C, Surey-Gent S C, Hunt H G, Durrant A E. 1992. Thalassiothrix longissima, a possible oceanic indicator species in the North Sea. In ICES Mar. Sci. Symp, 195: 268–277.Google Scholar
  58. Rivkin R B, Seliger H H, Swift E, Biggley W H. 1982. Lightshade adaptation by the oceanic dinoflagellates Pyrocystis noctiluca and P. fusiformis. Marine Biology, 68 (2): 181–191.CrossRefGoogle Scholar
  59. Rodríguez J M, Hernández-León S, Barton E D. 1999. Mesoscale distribution of fish larvae in relation to an upwelling filament offNorthwest Africa. Deep Sea Research Part I: Oceanographic Research Papers, 46 (11): 1969–1984.CrossRefGoogle Scholar
  60. Salomoni S E, Rocha O, Callegaro V L, Lobo E A. 2006. Epilithic diatoms as indicators of water quality in the Gravataí river, Rio Grande do Sul, Brazil. Hydrobiologia, 559 (1): 233–246.CrossRefGoogle Scholar
  61. Sañudo-Wilhelmy S A, Kustka A B, Gobler C J, Hutchins D A, Yang M, Lwiza K, Burns J, Capone D G, Raven J A, Carpenter E J. 2001. Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature, 411 (6833): 66–69.CrossRefGoogle Scholar
  62. Shaw P T, Chao S Y. 1994. Surface circulation in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 41 (11-12): 1663–1683.CrossRefGoogle Scholar
  63. Shiozaki T, Kodama T, Kitajima S, Sato M, Furuya K. 2013. Advective transport of diazotrophs and importance of their nitrogen fixation on new and primary production in the western Pacific warm pool. Limnology and Oceanography, 58 (1): 49–60.CrossRefGoogle Scholar
  64. Shmida A, Wilson M V. 1985. Biological determinants of species diversity. Journal of Biogeography, 12 (1): 1–20.CrossRefGoogle Scholar
  65. Stal L J, Severin I, Bolhuis H. 2010. The ecology of nitrogen fixation in cyanobacterial mats. In: Hallenbeck P. Recent Advances in Phototrophic Prokaryotes. Springer, New York, USA. p.31–45.CrossRefGoogle Scholar
  66. Stal L J. 2009. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature?. Environmental Microbiology, 11 (7): 1632–1645.CrossRefGoogle Scholar
  67. Stevenson R J, Pan Y D, van Dam H. 1999. Assessing environmental conditions in rivers and streams with diatoms. In: Smol J P, Stoermer E F eds. The Diatoms: Applications for the Environmental and earth Sciences. 2 nd edn. Cambridge University Press, Cambridge, Britain. 4p.Google Scholar
  68. Tang D L, Ni I H, Kester D R, Müller-Karger F E. 1999. Remote sensing observations of winter phytoplankton blooms southwest of the Luzon Strait in the South China Sea. Marine Ecology-Progress Series, 191: 43–51.CrossRefGoogle Scholar
  69. Taylor F J R. 1973. General features of dinoflagellate material collected by the “Anton Bruun” during the International Indian Ocean Expedition. In: Zeitzschel B, Gerlach S A eds. The Biology of the Indian Ocean. Springer, Berlin Heidelberg, Germany. p.155–169.CrossRefGoogle Scholar
  70. Thorson G. 1950. Reproductive and larval ecology of marine bottom invertebrates. Biological Reviews, 25 (1): 1–45.CrossRefGoogle Scholar
  71. Tilman D, Kilham S S, Kilham P. 1982. Phytoplankton community ecology: the role of limiting nutrients. Annual Review of Ecology and Systematics, 13: 349–372.CrossRefGoogle Scholar
  72. Tyrrell T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400 (6744): 525–531.CrossRefGoogle Scholar
  73. Vaillancourt R D, Marra J, Seki M P, Parsons M L, Bidigare R R. 2003. Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 50 (7): 829–847.CrossRefGoogle Scholar
  74. Voss M, Croot P, Lochte K, Mills M, Peeken I. 2004. Patterns of nitrogen fixation along 10°N in the tropical Atlantic. Geophysical Research Letters, 31 (23): L23S09.CrossRefGoogle Scholar
  75. Wang Y, Kang J H, Ye Y Y, Lin G M, Yang Q L, Lin M. 2016. Phytoplankton community and environmental correlates in a coastal upwelling zone along western Taiwan Strait. Journal of Marine Systems, 154: 252–263.CrossRefGoogle Scholar
  76. Yang Q L, Lin G M, Lin M, Dai Y Y. 2002. Species Composition and distribution of phytoplankton in the china pioneer area of the northeast Pacific Ocean. Marine Science Bulletin, 21 (4): 15–27. (in Chinese with English abstract)Google Scholar
  77. Yang Y, Sun X X, Zhu M L, Luo X, Zheng S. 2016. Estimating the carbon biomass of marine net phytoplankton from abundance based on samples from China seas. Marine and Freshwater Research. Google Scholar
  78. Yentsch C S, Menzel D W. 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Research and Oceanographic Abstracts, 10 (3): 221–231.CrossRefGoogle Scholar
  79. Zehr J P, Ward B B. 2002. Nitrogen cycling in the ocean: new perspectives on processes and paradigms. Applied and Environmental Microbiology, 68 (3): 1015–1024.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Yunyan Chen (陈芸燕)
    • 1
    • 2
  • Xiaoxia Sun (孙晓霞)
    • 1
    • 2
    • 3
  • Mingliang Zhun (朱明亮)
    • 1
  1. 1.Jiao Zhou Bay Marine Ecosystem Research StationChinese Academy of SciencesQingdaoChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Laboratory of Marine Ecology and Environmental ScienceQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations