Effects of dietary supplementation of Ulva pertusa and non-starch polysaccharide enzymes on gut microbiota of Siganus canaliculatus

  • Xinxu Zhang (张新旭)
  • Huijuan Wu (吴惠娟)
  • Zhongzhen Li (李忠贞)
  • Yuanyou Li (李远友)
  • Shuqi Wang (王树启)
  • Dashi Zhu (朱大世)
  • Xiaobo Wen (温小波)
  • Shengkang Li (李升康)
Article
  • 68 Downloads

Abstract

Fishes represent the highest diversity of vertebrates; however, our understanding of the compositions and functions of their gut microbiota is limited. In this study, we provided the first insight into the gut microbiota of the herbivorous fish Siganus canaliculatus (S. canaliculatus) by using three molecular ecology techniques based on the 16S rRNA genes (denaturing gradient gel electrophoresis, clone library construction, and high-throughput Illumina sequencing), and the Illumina sequencing technique is suggested here due to its higher overall coverage of the total 16S rRNA genes. A core gut microbiota of 29 bacterial groups, covering >99.9% of the total bacterial community, was found to be dominated by Proteobacteria and Firmicutes in fish fed three different diets with/without the supplementation of Ulva pertusa (U. pertusa) and non-starch polysaccharide (NSP) enzymes (cellulase, xylanase, and β-glucanase). Diverse potential NSP-degrading bacteria and probiotics (e.g., Ruminococcus, Clostridium and Lachnospiraceae) were detected in the intestine of the fish fed U. pertusa, suggesting that these microorganisms likely participated in the degradation of NSPs derived from U. pertusa. This study supports our previous conclusion that U. pertusa-based diets are suitable for the production of S. canaliculatus with lower costs without compromising quality.

Keywords

aquaculture gut microbiota Siganus canaliculatus 16S rRNA gene Ulva pertusa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

We thank Prof. WEI Chiju of Shantou University for critical discussion and proof-reading of the manuscript.

Supplementary material

343_2017_6235_MOESM1_ESM.pdf (746 kb)
Supplementary material, approximately 746 KB.

References

  1. Ai Q H, Mai K S, Zhang W B, Xu W, Tan B P, Zhang C X, Li H T. 2007. Effects of exogenous enzymes (phytase, nonstarch polysaccharide enzyme) in diets on growth, feed utilization, nitrogen and phosphorus excretion of Japanese seabass, Lateolabrax japonicus. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 147(2): 502–508.CrossRefGoogle Scholar
  2. Allan G L, Parkinson S, Booth M A, Stone D A J, Rowland S J, Frances J, Warner-Smith R. 2000. Replacement of fish meal in diets for Australian silver perch, Bidyanus bidyanus: I. Digestibility of alternative ingredients. Aquaculture, 186(3–4): 293–310.CrossRefGoogle Scholar
  3. Almirall M, Francesch M, Perez-Vendrell A M, Brufau J, Esteve-Garcia E. 1995. The differences in intestinal viscosity produced by barley and β-glucanase alter digesta enzyme activities and ileal nutrient digestibilities more in broiler chicks than in cocks. J. Nutr., 125(4): 947–955.Google Scholar
  4. Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. 1990. Basic local alignment search tool. J. Mol. Biol., 215(3): 403–410.CrossRefGoogle Scholar
  5. Attene-Ramos M S, Wagner E D, Plewa M J, Gaskins H R. 2006. Evidence that hydrogen sulfide is a genotoxic agent. Mol. Cancer Res., 4(1): 9–14.CrossRefGoogle Scholar
  6. Caporaso J G, Bittinger K, Bushman F D, DeSantis T Z, Andersen G L, Knight R. 2010a. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics, 26(2): 266–267.CrossRefGoogle Scholar
  7. Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010b. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods, 7(5): 335–336.CrossRefGoogle Scholar
  8. Choct M. 1997. Feed non-starch polysaccharides: chemical structures and nutritional significance. Feed Milling Int., (June): 13–26.Google Scholar
  9. Clements K D, Pasch I B Y, Moran D, Turner S J. 2007. Clostridia dominate 16S rRNA gene libraries prepared from the hindgut of temperate marine herbivorous fishes. Mar. Biol., 150(6): 1431–1440.CrossRefGoogle Scholar
  10. Cruaud P, Vigneron A, Lucchetti-Miganeh C, Ciron P E, Godfroy A, Cambon-Bonavita M A. 2014. Influence of DNA extraction method, 16S rRNA targeted hypervariable regions, and sample origin on microbial diversity detected by 454 pyrosequencing in marine chemosynthetic ecosystems. Appl. Environ. Microbiol., 80(15): 4626–4639.CrossRefGoogle Scholar
  11. David L A, Maurice C F, Carmody R N, Gootenberg D B, Button J E, Wolfe B E, Ling A V, Devlin A S, Varma Y, Fischbach M A, Biddinger S B, Dutton R J, Turnbaugh P J. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484): 559–563.CrossRefGoogle Scholar
  12. DeSantis T Z, Hugenholtz P, Larsen N, Rojas M, Brodie E L, Keller K, Huber T, Dalevi D, Hu P, Andersen G L. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol., 72(7): 5069–5072.CrossRefGoogle Scholar
  13. Durbán A, Abellán J J, Jiménez-Hernández N, Latorre A, Moya A. 2012. Daily follow-up of bacterial communities in the human gut reveals stable composition and hostspecific patterns of interaction. FEMS Microbiol. Ecol., 81(2): 427–437.CrossRefGoogle Scholar
  14. Edgar R C, Haas B J, Clemente J C, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16): 2194–2200.CrossRefGoogle Scholar
  15. Edgar R C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19): 2460–2461.CrossRefGoogle Scholar
  16. Flint H J, Bayer E A, Rincon M T, Lamed R, White B A. 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol., 6(2): 121–131.CrossRefGoogle Scholar
  17. Gómez G D, Balcázar J L. 2008. A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunol. Med. Microbiol., 52(2): 145–154.CrossRefGoogle Scholar
  18. Güroy B, Ergün S, Merrifield D L, Güroy D. 2013. Effect of autoclaved Ulva meal on growth performance, nutrient utilization and fatty acid profile of rainbow trout, Oncorhynchus mykiss. Aquacult. Int., 21(3): 605–615.CrossRefGoogle Scholar
  19. Hammer O, Harper D A T, Ryan P. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1): 1–9.Google Scholar
  20. Heidelberg J F, Seshadri R, Haveman S A, Hemme C L, Paulsen I T, Kolonay J F, Eisen J A, Ward N, Methe B, Brinkac L M, Daugherty S C, Deboy R T, Dodson R J, Durkin A S, Madupu R, Nelson W C, Sullivan S A, Fouts D, Haft D H, Selengut J, Peterson J D, Davidsen T M, Zafar N, Zhou L W, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback T R, Feldblyum T V, Wall J D, Voordouw G, Fraser C M. 2004. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat. Biotechnol., 22(5): 554–559.CrossRefGoogle Scholar
  21. Kato S, Haruta S, Cui Z J, Ishii M, Yokota A, Igarashi Y. 2004. Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int. J. Syst. Evol. Microbiol., 54(6): 2043–2047.CrossRefGoogle Scholar
  22. Kong Y H, Teather R, Forster R. 2010. Composition, spatial distribution, and diversity of the bacterial communities in the rumen of cows fed different forages. FEMS Microbiol. Ecol., 74(3): 612–622.CrossRefGoogle Scholar
  23. Kumar S, Sahu N P, Pal A K, Choudhury D, Mukherjee S C. 2006. Studies on digestibility and digestive enzyme activities in Labeo rohita (Hamilton) juveniles: effect of microbial α-amylase supplementation in non-gelatinized or gelatinized corn-based diet at two protein levels. Fish Physiol. Biochem., 32(3): 209–220.CrossRefGoogle Scholar
  24. Kuz'mina V V. 1996. Influence of age on digestive enzyme activity in some freshwater teleosts. Aquaculture, 148(1): 25–37.CrossRefGoogle Scholar
  25. Leenhouwers J I, Ortega R C, Verreth J A J, Schrama J W. 2007. Digesta characteristics in relation to nutrient digestibility and mineral absorption in Nile tilapia (Oreochromis niloticus L.) fed cereal grains of increasing viscosity. Aquaculture, 273(4): 556–565.CrossRefGoogle Scholar
  26. Ley R E, Lozupone C A, Hamady M, Knight R, Gordon J I. 2008. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol., 6(10): 776–788.CrossRefGoogle Scholar
  27. Li Q, Wang S Q, You C H, Li Y Y. 2013. Comparison of three Non-starch polysaccharide enzymes on the in vitro digestibility of several kinds of marine algae. Siliao Gongye, 34(22): 37–41. (in Chinese)Google Scholar
  28. Li S, Sun L, Wu H, Hu Z, Liu W, Li Y, Wen X. 2012. The intestinal microbial diversity in mud crab (Scylla paramamosain) as determined by PCR-DGGE and clone library analysis. J. Appl. Microbiol., 113(6): 1341–1351.CrossRefGoogle Scholar
  29. Li Y Y, Hu C B, Zheng Y J, Xia X A, Xu W J, Wang S Q, Chen W Z, Sun Z W, Huang J H. 2008. The effects of dietary fatty acids on liver fatty acid composition and Δ6-desaturase expression differ with ambient salinities in Siganus canaliculatus. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 151(2): 183–190.CrossRefGoogle Scholar
  30. Nayak S K. 2010. Role of gastrointestinal microbiota in fish. Aquacult. Res., 41(11): 1553–1573.CrossRefGoogle Scholar
  31. O'Connell J M, Sweeney T, Callan J J, O'Doherty J V. 2005. The effect of cereal type and exogenous enzyme supplementation in pig diets on nutrient digestibility, intestinal microflora, volatile fatty acid concentration and manure ammonia emissions from finisher pigs. Animal Science, 81(3): 357–364.CrossRefGoogle Scholar
  32. Pankratov T A, Dedysh S N, Zavarzin G A. 2006. The leading role of actinobacteria in aerobic cellulose degradation in Sphagnum peat bogs. Dokl. Biol. Sci., 410(1): 428–430.CrossRefGoogle Scholar
  33. Pérez-Sánchez T, Ruiz-Zarzuela I, de Blas I, Balcázar J L. 2014. Probiotics in aquaculture: a current assessment. Rev. Aquacult., 6(3): 133–146.CrossRefGoogle Scholar
  34. Pinto A J, Raskin L. 2012. PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS One, 7(8): e43093.CrossRefGoogle Scholar
  35. Price M N, Dehal P S, Arkin A P. 2010. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One, 5(3): e9490.CrossRefGoogle Scholar
  36. R Core Team. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.org/.Google Scholar
  37. Rawls J F, Samuel B S, Gordon J I. 2004. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. U.S.A., 101(13): 4596–4601.CrossRefGoogle Scholar
  38. Refstie S, Svihus B, Shearer K D, Storebakken T. 1999. Nutrient digestibility in Atlantic salmon and broiler chickens related to viscosity and non-starch polysaccharide content in different soyabean products. Anim. Feed Sci. Technol., 79(4): 331–345.CrossRefGoogle Scholar
  39. Ringø E, Strøm E, Tabachek J A. 1995. Intestinal microflora of salmonids: a review. Aquacult. Res., 26(10): 773–789.CrossRefGoogle Scholar
  40. Roeselers G, Mittge E K, Stephens W Z, Parichy D M, Cavanaugh C M, Guillemin K, Rawls J F. 2011. Evidence for a core gut microbiota in the zebrafish. ISME J., 5(10): 1595–1608.CrossRefGoogle Scholar
  41. Saha S, Roy R N, Sen S K, Ray A K. 2006. Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valenciennes). Aquacult. Res., 37(4): 380–388.CrossRefGoogle Scholar
  42. Salonen A, Lahti L, Salojärvi J, Holtrop G, Korpela K, Duncan S H, Date P, Farquharson F, Johnstone A M, Lobley G E, Louis P, Flint H J, de Vos W M. 2014. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J., 8(11): 2218–2230.CrossRefGoogle Scholar
  43. Shade A, Handelsman J. 2012. Beyond the Venn diagram: the hunt for a core microbiome. Environ. Microbiol., 14(1): 4–12.CrossRefGoogle Scholar
  44. Sijpesteijn A K. 1951. On ruminococcus flavefaciens, a cellulose-decomposing bacterium from the rumen of sheep and cattle. J. Gen. Microbiol., 5: 869–879.CrossRefGoogle Scholar
  45. Sinha A K, Kumar V, Makkar H P S, De Boeck G, Becker K. 2011. Non-starch polysaccharides and their role in fish nutrition-A review. Food Chem., 127(4): 1409–1426.CrossRefGoogle Scholar
  46. Storebakken T, Kvien I S, Shearer K D, Grisdale-Helland B, Helland S J. 1999. Estimation of gastrointestinal evacuation rate in Atlantic salmon (Salmo salar) using inert markers and collection of faeces by sieving: evacuation of diets with fish meal, soybean meal or bacterial meal. Aquaculture, 172(3–4): 291–299.CrossRefGoogle Scholar
  47. Sullam K E, Essinger S D, Lozupone C A, O’Connor M P, Rosen G L, Knight R O B, Kilham S S, Russell J A. 2012. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol. Ecol., 21(13): 3363–3378.CrossRefGoogle Scholar
  48. Teske A, Sørensen K B. 2008. Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J., 2(1): 3–18.CrossRefGoogle Scholar
  49. Tolentino-Pablico G, Bailly N, Froese R, Elloran C. 2008. Seaweeds preferred by herbivorous fishes. J. Appl. Phycol., 20(5): 933–938.CrossRefGoogle Scholar
  50. Van Soest P J. 1994. Nutritional Ecology of the Ruminant. 2nd edn. Cornell University Press, Ithaca.Google Scholar
  51. Větrovský T, Baldrian P. 2013. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One, 8(2): e57923.CrossRefGoogle Scholar
  52. von Westernhagen H. 1973. The natural food of the rabbitfish Siganus oramin and S. striolata. Mar. Biol., 22(4): 367–370.CrossRefGoogle Scholar
  53. Wang S Q, Xu S D, Wu Q Y, Zhang L, Zhang T, You C H, Zheng H P, Li Y Y. 2010. Optimal levels of protein and lipid in diets for rabbitfish Siganus canaliculatus juvenile. Marine Sciences, 34(11): 18–22. (in Chinese with English abstract)Google Scholar
  54. White W L, Coveny A H, Robertson J, Clements K D. 2010. Utilisation of mannitol by temperate marine herbivorous fishes. J. Exp. Mar. Biol. Ecol., 391(1–2): 50–56.CrossRefGoogle Scholar
  55. Wong S, Waldrop T, Summerfelt S, Davidson J, Barrows F, Kenney P B, Welch T, Wiens G D, Snekvik K, Rawls J F, Good C. 2013. Aquacultured rainbow trout (Oncorhynchus mykiss) possess a large core intestinal microbiota that is resistant to variation in diet and rearing density. Appl. Environ. Microbiol., 79(16): 4974–4984.CrossRefGoogle Scholar
  56. Wu S G, Wang G T, Angert E R, Wang W W, Li W X, Zou H. 2012. Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One, 7(2): e30440.CrossRefGoogle Scholar
  57. Xu S D, Zhang L, Wu Q Y, Liu X B, Wang S Q, You C H, Li Y Y. 2011. Evaluation of dried seaweed Gracilaria lemaneiformis as an ingredient in diets for teleost fish Siganus canaliculatus. Aquacult. Int., 19(5): 1007–1018.CrossRefGoogle Scholar
  58. Ye L, Amberg J, Chapman D, Gaikowski M, Liu W T. 2014. Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. ISME J., 8(3): 541–551.CrossRefGoogle Scholar
  59. You C H, Zeng F G, Wang S Q, Li Y Y. 2014a. Preference of the herbivorous marine teleost Siganus canaliculatus for different macroalgae. J. Ocean Univ. China, 13(3): 516–522.CrossRefGoogle Scholar
  60. You C H, Zhang W T, Wang S Q, Cheng C H K, Li Y Y. 2014b. Evaluation of green alga Ulva pertusa as a dietary ingredient for rabbitfish Siganus canaliculatus juveniles. J. J. Aquacul. Res., 1(1): 005.Google Scholar
  61. Zhang M L, Sun Y H, Liu Y K, Qiao F, Chen L Q, Liu W T, Du Z Y, Li E C. 2016. Response of gut microbiota to salinity change in two euryhaline aquatic animals with reverse salinity preference. Aquaculture, 454: 72–80.CrossRefGoogle Scholar
  62. Zhang W. 2012. Primary study on the utilization of macro-alga Ulva Pertusa as dietary ingredient. (in Chinese with English abstract)Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xinxu Zhang (张新旭)
    • 1
    • 2
  • Huijuan Wu (吴惠娟)
    • 1
    • 2
  • Zhongzhen Li (李忠贞)
    • 1
    • 2
  • Yuanyou Li (李远友)
    • 1
    • 2
  • Shuqi Wang (王树启)
    • 1
    • 2
  • Dashi Zhu (朱大世)
    • 1
    • 2
  • Xiaobo Wen (温小波)
    • 1
    • 2
  • Shengkang Li (李升康)
    • 1
    • 2
  1. 1.Guangdong Provincial Key Laboratory of Marine BiotechnologyShantou UniversityShantouChina
  2. 2.Marine Biology InstituteShantou UniversityShantouChina

Personalised recommendations