Abstract
Fertilised eggs of the devil stringer (Inimicus japonicus) were incubated at different salinity levels (21, 25, 29, 33, and 37), and then the hatching performances, morphological parameters, and biochemical composition (protein, lipid and carbohydrate) of the larvae were assayed to determine the influence of salinity on the early development of I. japonicus. The tested salinity levels did not affect the times of hatching or mouth opening for yolk-sac larvae. However, the salinity significantly influenced the hatching and survival rates of open-mouthed larvae, as well as the morphology of yolk-sac larvae. The data indicated that 30.5 to 37.3 and 24.4 to 29.8 were suitable salinity ranges for the survival of embryos and larvae of I. japonicus, respectively. Larvae incubated at a salinity level of 29 had the greatest full lengths, and decreasing yolk volume was positively correlated with the environmental salinity. With increasing salinity, the individual dry weights of newly hatched larvae or open-mouthed larvae decreased significantly. Newly hatched larvae incubated at a salinity level of 29 had the greatest metabolic substrate contents and gross energy levels, while the openmouthed larvae’s greatest values occurred at a salinity level of 25. Larvae incubated in the salinity range of 33 to 37 had the lowest nutritional reserves and energy values. Thus, the I. japonicus yolk-sac larvae acclimated more readily to the lower salinity level than the embryos, and higher salinity levels negatively influenced larval growth and development. In conclusion, the environmental salinity level should be maintained at 29–33 during embryogenesis and at 25–29 during early larval development for this species. Our results can be used to provide optimum aquaculture conditions for the early larval development of I. japonicus.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alderdice D F, Hourston A S. 1985. Factors influencing development and survival of Pacific herring (Clupea harengus pallasi) eggs and larvae to beginning of exogenous feeding. Can. J. Fish. Aquat. Sci., 42 (S1): 56–68.
Alderdice D F, Rao T R, Rosenthal H. 1979. Osmotic responses of eggs and larvae of the Pacific herring to salinity and cadmium. Helgoländer Wiss. Meeresunters., 32 (4): 508–538.
Berlinsky D L, Taylor J C, Howell R A, Bradley T M, Smith T I J. 2004. The effects of temperature and salinity on early life stages of black sea bass Centropristis striata. J. World Aquacult. Soc., 35 (3): 335–344.
Bodinier C, Sucré E, Lecurieux-Belfond L, Blondeau-Bidet E, Charmantier G. 2010. Ontogeny of osmoregulation and salinity tolerance in the gilthead sea bream Sparus aurata. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 157 (3): 220–228.
Boeuf G, Payan P. 2001. How should salinity influence fish growth? Comp. Biochem. Physiol. C Toxicol. Pharmacol., 130 (4): 411–423.
Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72 (1-2): 248–253.
Brett J R. 1979. Environmental factors and growth. In: Hoar W S, Randall D J eds. Fish Physiology. Academic Press, New York, USA. p.599–675.
Cai W C, Ou Y J, Li J E. 2010. Effects of water salinity on embryonic development of rock bream Oplegnathus fasciatus. Chinese J. Ecol., 29 (5): 951–956. (in Chinese with English abstract)
Cetta C M, Capuzzo J M. 1982. Physiological and biochemical aspects of embryonic and larval development of the winter flounder Pseudopleuronectes americanus. Mar. Biol., 71 (3): 327–337.
Conides A J, Glamuzina B. 2001. Study on the early larval development and growth of the red porgy, “Pagrus pagrus” with emphasis on the mass mortalities observed during this phase. Sci Mar., 65(3): 193–200.
Davenport J, Lønning S, Kjørsvik E. 1981. Osmotic and structural changes during early development of eggs and larvae of the cod, Gadus morhua L. J. Fish Biol., 19 (3): 317–331.
DuBois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28 (3): 350–356.
Fashina-Bombata H A, Busari A N. 2003. Influence of salinity on the developmental stages of African catfish Heterobranchus longifilis (Valenciennes, 1840). Aquaculture, 224 (1-4): 213–222.
Fielder D S, Allan G L, Pepperall D, Pankhurst P M. 2007. The effects of changes in salinity on osmoregulation and chloride cell morphology of juvenile Australian snapper, Pagrus auratus. Aquaculture, 272 (1-4): 656–666.
Fielder D S, Bardsley W J, Allan G L, Pankhurst P M. 2005. The effects of salinity and temperature on growth and survival of Australian snapper, Pagrus auratus larvae. Aquaculture, 250 (1-2), 201–214.
Finn R N, Fyhn H J, Evjen M S. 1995a. Physiological energetics of developing embryos and yolk-sac larvae of Atlantic cod (Gadus morhua). I. Respiration and nitrogen metabolism. Mar. Biol., 124 (3): 355–369.
Finn R N, Rønnestad I, Fyhn H J. 1995b. Respiration, nitrogen and energy metabolism of developing yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus L.). Comp. Biochem. Physiol. A Physiol., 111 (4): 647–671.
Folch J, Lees M, Stanley G H S. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 226 (1): 497–509.
Hart P R, Purser G J. 1995. Effects of salinity and temperature on eggs and yolk sac larvae of the greenback flounder (Rhombosolea tapirina Günther, 1862). Aquaculture, 136 (3-4): 221–230.
Henken A M, Lucas H, Tijssen P A T, Machiels M A M. 1986. A comparison between methods used to determine the energy content of feed, fish and faeces samples. Aquaculture, 58 (3-4): 195–201.
Holliday F G T, Blaxter J H S. 1960. The effects of salinity on the developing eggs and larvae of the herring. J. Mar. Biol. Assoc. U.K., 39 (3): 591–603.
Holliday F G T. 1969. The effects of salinity on the eggs and larvae of teleosts. In: Hoar W S, Randall D J eds. Fish Physiology. Academic Press, New York, USA. p.293–311.
Hu X C, Zhao Y L, Zhou Z L. 2008. Effect of salinity on the biochemical composition and energy budget in starved juvenile sleeper Odontobutis potamophila (Günther). Fisheries Sci. 27 (3): 109–113.
Huang X X, Feng L F, Wen W, Chen Q K, Wei L K. 2013. The changes in lipid and fatty acid profiles of devil stinger Inimicus japonicas during the development of embryo and yolk-sac larvae. J. Fish. China, 37 (4): 526–535. (in Chinese with English abstract)
Imsland A K, Foss A, Gunnarsson S, Berntssen M H.G, Fitzgerald R, Bonga S W. Ham E V, Nævdal G, Stefansson S O. 2001. The interaction of temperature and salinity on growth and food conversion in juvenile turbot (Scophthalmus maximus). Aquaculture, 198 (3): 353–367.
Jobling M. 1988. A review of the physiological and nutritional energetics of cod, Gadus morhua L., with particular reference to growth under farmed conditions. Aquaculture, 70 (1-2): 1–19.
Kamler E. 2002. Ontogeny of yolk-feeding fish: an ecological perspective. Rev. Fish Biol. Fish., 12 (1): 79–103.
Kjörsvik E, Davenport J, Lönning S. 1984. Osmotic changes during the development of eggs and larvae of the lumpsucker, Cydopterus lumpus L. J. Fish Biol., 24 (3): 311–321.
Labonne M, Morize E, Scolan P, Lae R, Dabas E, Bohn M. 2009. Impact of salinity on early life history traits of three estuarine fish species in Senegal. Estuar. Coast. Shelf Sci., 82 (4): 673–681.
Laiz-Carrión R, Sangiao-Alvarellos S, Guzmán J M, Martín del Río M P, Soengas J L, Mancera J M. 2005. Growth performance of gilthead sea bream Sparus aurata in different osmotic conditions: implications for osmoregulation and energy metabolism. Aquaculture, 250 (3-4): 849–861.
Lin X J. 2008. The effects of salinity on development of fertilizer eggs and larvae of Inimicus japonicus. J. Fujian Fish., (4): 24–26. (in Chinese with English abstract)
Liu W, Zhi B J, Zhan P R, Guan H H, Qin D L. 2010. Effects of salinity on haematological biochemistrical indices and liver tissue in juvenile Oncorhynchus keta. Chinese J. Appl. Ecol., 21 (9): 2411–2417. (in Chinese with English abstract)
Liu Z Y, Quan H F. 2005. Research on the technique for artificial breeding of Inimicus japonicus. J. Shanghai Fish. Univ., 14 (1): 30–34. (in Chinese with English abstract)
Mihelakakis A, Kitajima C. 1994. Effects of salinity and temperature on incubation period, hatching rate, and morphogenesis of the silver sea bream, Sparus sarba (Forskål, 1775). Aquaculture, 126 (3-4): 361–371.
Morgan J D. 1998. Energetic aspects of osmoregulation in fish. Diss. Abst. Int. Pt. B-Sci. Eng., 59: 486B.
Ohkubo N, Sawaguchi S, Nomura K, Tanaka H, Matsubara T. 2008. Utilization of free amino acids, yolk protein and lipids in developing eggs and yolk-sac larvae of Japanese eel Anguilla japonica. Aquaculture, 282 (1-4): 130–137.
Okamoto T, Kurokawa T, Gen K, Murashita K, Nomura K, Kim S K, Matsubara H, Ohta H, Tanaka H. 2009. Influence of salinity on morphological deformities in cultured larvae of Japanese eel, Anguilla japonica, at completion of yolk resorption. Aquaculture, 293 (1-2): 113–118.
Ostrowski A D, Watanabe W O, Montgomery F P, Rezek T C, Shafer T H, Morris Jr J A. 2011. Effects of salinity and temperature on the growth, survival, whole body osmolality, and expression of Na+/K+ ATPase mRNA in red porgy (Pagrus pagrus) larvae. Aquaculture, 314 (1-4): 193–201.
Overton J L, Bayley M, Paulsen H, Wang T. 2008. Salinity tolerance of cultured Eurasian perch, Perca fluviatilis L.: effects on growth and on survival as a function of temperature. Aquaculture, 277 (3-4): 282–286.
Rønnestad I, Fyhn H J, Gravningen K. 1992. The importance of free amino acids to the energy metabolism of eggs and larvae of turbot (Scophthalmus maximus). Mar. Biol., 114 (4): 517–525.
Rønnestad I, Fyhn H J. 1993. Metabolic aspects of free amino acids in developing marine fish eggs and larvae. Rev. Fish. Sci., 1 (3): 239–259.
Saoud I P, Kreydiyyeh S, Chalfoun A, Fakih M. 2007. Influence of salinity on survival, growth, plasma osmolality and gill Na+-K+-ATPase activity in the rabbitfish Siganus rivulatus. J. Exp. Mar. Biol. Ecol., 348 (1-2): 183–190.
Sha X S, Ruan H C, He G F. 1981. The development of the egg and larval stages of the lumpfish, Inimicus japonicus (C. and V.). Oceanol. Limnol. Sinica, 12 (4): 365–373. (in Chinese with English abstract)
Shi Z H, Chen B, Peng S M, Chen C, Wang J G, Fu R B, Liu M H. 2008. The morphological change under salinity stress in development of yolk sac larvae of Epinephelus malabaricus. Oceanol. Limnol. Sinica, 39 (3): 222–227. (in Chinese with English abstract)
Shi Z H, Huang X X, Fu R B, Wang H P, Luo H Z, Chen B, Liu M H, Zhang D. 2008. Salinity stress on embryos and early larval stages of the pomfret Pampus punctatissimus. Aquaculture, 275 (1-4): 306–310.
Shi Z H, Peng S M, Yin Y Q, Luo H Z, Ni M L. 2009. Morphological changes of embryo and yolk sac larvae of barred knifejaw (Oplegnathus fascltus) under salinity stress. Chinese J. Ecol., 28 (3): 471–476. (in Chinese with English abstract)
Shi Z H, Xia L J, Wang J G, Lu J X, Zhao R X, Wang H P, Xie L F. 2004. Effect of salinity on embryonic development and larval growth of Dentex tumifrons Temminck et Schlegel. J. Fish. China, 28 (5): 599–602. (in Chinese with English abstract)
Sucré E, Bossus M, Bodinier C, Boulo V, Charmantier G, Charmantier-Daures M, Cucchi P. 2013. Osmoregulatory response to low salinities in the European sea bass embryos: a multi-site approach. J. Comp. Physiol. B, 183 (1): 83–97.
Tian X L, Wang G D, Dong S L, Fang J H. 2010. Effects of salinity and temperature on growth, osmophysiology and energy budget of tongue sole (Cynoglossus semilaevis Günther). J. Fish. Sci. China, 17 (4): 771–782. (in Chinese with English abstract)
Varsamos S, Nebel C, Charmantier G. 2005. Ontogeny of osmoregulation in postembryonic fish: a review. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 141 (4): 401–429.
Vetter R D, Hodson R E, Arnold C. 1983. Energy metabolism in a rapidly developing marine fish egg, the red drum (Sciaenops ocellata). Can. J. Fish. Aquat. Sci., 40 (5): 627–634.
Wang H S, Fang Q S, Zheng L Y. 2002. Effects of salinity on hatching rates and survival activity index of the larvae of Epinephelus akaara. J. Fish. China, 26 (4): 344–350. (in Chinese with English abstract)
Wang H S. 2002. Effects of salinity on egg development and growth, larval and juvenile survival rate of Pagrosomus major. J. Fish. Sci. China, 9 (1): 33–38. (in Chinese with English abstract)
Wang S L, Zhou Y, Zhu X M. 2012a. Research advances on several factors affecting energy budget of fish. Chinese Fish. Qual. Stand., 2 (4): 61–67. (in Chinese with English abstract)
Wang Y R, Li E C, Chen L Q, Wang X D, Zhang F Y, Gao L J, Long L N. 2012b. Effect of acute salinity stress on soluble protein, hemocyanin, haemolymph glucose and hepatopancreas glycogen of Eriocheir sinensis. Acta Hydrobiol. Sinica, 36 (6): 1056–1062. (in Chinese with English abstract)
Wen W, Huang X X, Chen Q K, Feng L F, Wei L K. 2013. Temperature effects on early development and biochemical dynamics of a marine fish, Inimicus japonicus. J. Exp. Mar. Biol. Ecol., 442: 22–29.
Wiegand M D. 1996. Composition, accumulation and utilization of yolk lipids in teleost fish. Rev. Fish Biol. Fish., 6 (3): 259–286.
Xu L W, Feng J, Guo Z X, Lin H Z, Guo G X. 2008. Effect of salinity on hematology and gill Na+-K+ ATPase activity of juvenile cobia, Rachycentron canadum Linnaeus. Mar. Environ. Sci., 27 (6): 602–606. (in Chinese with English abstract)
Xu Y J, Liu X Z, Wang Y Y, Qu J Z. 2009. Effects of temperature and salinity on embryonic development and starving tolerance of newly hatched larvae of rock bream Oplegnathus fasciatus. Prog. Fish. Sci., 30 (3): 25–31. (in Chinese with English abstract)
Yan J Q, Huang X X, Ma S J, Huang Z Z, Lü W Q. 2011. Culture condition and cellular biochemical composition of two microalgae Oocystis solitaria and Selenastrum sp. Chinese J. Ecol., 30 (12): 2761–2766. (in Chinese with English abstract)
Yang Z, Chen Y F. 2006. Salinity tolerance of embryos of obscure puffer Takifugu obscurus. Aquaculture, 253 (1-4): 393–397.
You H Z, Yang Z Q, Ge S G, Jiang Z Q. 2009. Effect of different salinity on biochemical composition and energy budget for Platichthys stellatus juveniles. Hebei Fisheries, 185 (5): 16–19. (in Chinese with English abstract).
Yu D G, Yang Y Q, Wang H Y, Xie J, Yu E M, Wang G J, Gong W B. 2011b. The effect of salinity change on physiology and biochemistry of Epinephelus coioides. J. Fish. China, 35 (5): 719–728. (in Chinese with English abstract)
Yu N, Li J E, Ou Y J, Fan C Y, Zhang J S. 2011a. Effects of salinity stresses on gill Na+/K+-ATPase (NAK) activity and body moisture in juvenile grey mullet Mugil cephalus. Chinese J. Zool., 46 (1): 93–99. (in Chinese with English abstract)
Yuan C Y, Cui Q M. 2004. A review: influence of salinity on development and growth of aquatic animals in aquaculture. Fish. Sci., 23 (5): 41–42. (in Chinese with English abstract)
Zeng L, Lei J L, Liu B, Hong W S, Ai C X. 2014. Effects of salinities on muscle amino acid and fatty acid composition of juvenile turbot(Scophthalmus maximus). Marine Sciences. 38 (12): 40–47 (in Chinese with English abstract)
Zhang L Z, Yang J H, Liu J Y, Zhuang P, Zhao F, Qu L. 2009. Effects of water temperature, salinity, pH, and anaesthetics on oxygen consumption rate of juvenile Siganus canaliculatus. Chinese J. Ecol., 28 (8): 1494–1498. (in Chinese with English abstract)
Zhuang Q Q, Zhao J L, Zhao L H, Chang J J. 2012. Effects of salinity stress on the adjustment of branchial chloride cells in Oreochromis niloticus. Chinese J. Ecol., 31 (10): 2619–2624. (in Chinese with English abstract)
Acknowledgment
The authors thank Mr. CHEN Qingkai for his assistance during larviculturing.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the Innovation Project of the Shanghai Education Commission, China (No. 12ZZ166) and the Shanghai Universities First-Class Disciplines Project of Fisheries
Rights and permissions
About this article
Cite this article
Gong, X., Huang, X. & Wen, W. Influence of salinity on the early development and biochemical dynamics of a marine fish, Inimicus japonicus. J. Ocean. Limnol. 36, 427–437 (2018). https://doi.org/10.1007/s00343-017-6223-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00343-017-6223-1