Skip to main content

Advertisement

Log in

Influence of salinity on the early development and biochemical dynamics of a marine fish, Inimicus japonicus

  • Biology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Fertilised eggs of the devil stringer (Inimicus japonicus) were incubated at different salinity levels (21, 25, 29, 33, and 37), and then the hatching performances, morphological parameters, and biochemical composition (protein, lipid and carbohydrate) of the larvae were assayed to determine the influence of salinity on the early development of I. japonicus. The tested salinity levels did not affect the times of hatching or mouth opening for yolk-sac larvae. However, the salinity significantly influenced the hatching and survival rates of open-mouthed larvae, as well as the morphology of yolk-sac larvae. The data indicated that 30.5 to 37.3 and 24.4 to 29.8 were suitable salinity ranges for the survival of embryos and larvae of I. japonicus, respectively. Larvae incubated at a salinity level of 29 had the greatest full lengths, and decreasing yolk volume was positively correlated with the environmental salinity. With increasing salinity, the individual dry weights of newly hatched larvae or open-mouthed larvae decreased significantly. Newly hatched larvae incubated at a salinity level of 29 had the greatest metabolic substrate contents and gross energy levels, while the openmouthed larvae’s greatest values occurred at a salinity level of 25. Larvae incubated in the salinity range of 33 to 37 had the lowest nutritional reserves and energy values. Thus, the I. japonicus yolk-sac larvae acclimated more readily to the lower salinity level than the embryos, and higher salinity levels negatively influenced larval growth and development. In conclusion, the environmental salinity level should be maintained at 29–33 during embryogenesis and at 25–29 during early larval development for this species. Our results can be used to provide optimum aquaculture conditions for the early larval development of I. japonicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alderdice D F, Hourston A S. 1985. Factors influencing development and survival of Pacific herring (Clupea harengus pallasi) eggs and larvae to beginning of exogenous feeding. Can. J. Fish. Aquat. Sci., 42 (S1): 56–68.

    Article  Google Scholar 

  • Alderdice D F, Rao T R, Rosenthal H. 1979. Osmotic responses of eggs and larvae of the Pacific herring to salinity and cadmium. Helgoländer Wiss. Meeresunters., 32 (4): 508–538.

    Article  Google Scholar 

  • Berlinsky D L, Taylor J C, Howell R A, Bradley T M, Smith T I J. 2004. The effects of temperature and salinity on early life stages of black sea bass Centropristis striata. J. World Aquacult. Soc., 35 (3): 335–344.

    Article  Google Scholar 

  • Bodinier C, Sucré E, Lecurieux-Belfond L, Blondeau-Bidet E, Charmantier G. 2010. Ontogeny of osmoregulation and salinity tolerance in the gilthead sea bream Sparus aurata. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 157 (3): 220–228.

    Article  Google Scholar 

  • Boeuf G, Payan P. 2001. How should salinity influence fish growth? Comp. Biochem. Physiol. C Toxicol. Pharmacol., 130 (4): 411–423.

    Article  Google Scholar 

  • Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72 (1-2): 248–253.

    Article  Google Scholar 

  • Brett J R. 1979. Environmental factors and growth. In: Hoar W S, Randall D J eds. Fish Physiology. Academic Press, New York, USA. p.599–675.

    Google Scholar 

  • Cai W C, Ou Y J, Li J E. 2010. Effects of water salinity on embryonic development of rock bream Oplegnathus fasciatus. Chinese J. Ecol., 29 (5): 951–956. (in Chinese with English abstract)

    Google Scholar 

  • Cetta C M, Capuzzo J M. 1982. Physiological and biochemical aspects of embryonic and larval development of the winter flounder Pseudopleuronectes americanus. Mar. Biol., 71 (3): 327–337.

    Article  Google Scholar 

  • Conides A J, Glamuzina B. 2001. Study on the early larval development and growth of the red porgy, “Pagrus pagrus” with emphasis on the mass mortalities observed during this phase. Sci Mar., 65(3): 193–200.

    Article  Google Scholar 

  • Davenport J, Lønning S, Kjørsvik E. 1981. Osmotic and structural changes during early development of eggs and larvae of the cod, Gadus morhua L. J. Fish Biol., 19 (3): 317–331.

    Article  Google Scholar 

  • DuBois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28 (3): 350–356.

    Article  Google Scholar 

  • Fashina-Bombata H A, Busari A N. 2003. Influence of salinity on the developmental stages of African catfish Heterobranchus longifilis (Valenciennes, 1840). Aquaculture, 224 (1-4): 213–222.

    Article  Google Scholar 

  • Fielder D S, Allan G L, Pepperall D, Pankhurst P M. 2007. The effects of changes in salinity on osmoregulation and chloride cell morphology of juvenile Australian snapper, Pagrus auratus. Aquaculture, 272 (1-4): 656–666.

    Article  Google Scholar 

  • Fielder D S, Bardsley W J, Allan G L, Pankhurst P M. 2005. The effects of salinity and temperature on growth and survival of Australian snapper, Pagrus auratus larvae. Aquaculture, 250 (1-2), 201–214.

    Article  Google Scholar 

  • Finn R N, Fyhn H J, Evjen M S. 1995a. Physiological energetics of developing embryos and yolk-sac larvae of Atlantic cod (Gadus morhua). I. Respiration and nitrogen metabolism. Mar. Biol., 124 (3): 355–369.

    Article  Google Scholar 

  • Finn R N, Rønnestad I, Fyhn H J. 1995b. Respiration, nitrogen and energy metabolism of developing yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus L.). Comp. Biochem. Physiol. A Physiol., 111 (4): 647–671.

    Article  Google Scholar 

  • Folch J, Lees M, Stanley G H S. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 226 (1): 497–509.

    Google Scholar 

  • Hart P R, Purser G J. 1995. Effects of salinity and temperature on eggs and yolk sac larvae of the greenback flounder (Rhombosolea tapirina Günther, 1862). Aquaculture, 136 (3-4): 221–230.

    Article  Google Scholar 

  • Henken A M, Lucas H, Tijssen P A T, Machiels M A M. 1986. A comparison between methods used to determine the energy content of feed, fish and faeces samples. Aquaculture, 58 (3-4): 195–201.

    Article  Google Scholar 

  • Holliday F G T, Blaxter J H S. 1960. The effects of salinity on the developing eggs and larvae of the herring. J. Mar. Biol. Assoc. U.K., 39 (3): 591–603.

    Article  Google Scholar 

  • Holliday F G T. 1969. The effects of salinity on the eggs and larvae of teleosts. In: Hoar W S, Randall D J eds. Fish Physiology. Academic Press, New York, USA. p.293–311.

    Google Scholar 

  • Hu X C, Zhao Y L, Zhou Z L. 2008. Effect of salinity on the biochemical composition and energy budget in starved juvenile sleeper Odontobutis potamophila (Günther). Fisheries Sci. 27 (3): 109–113.

    Google Scholar 

  • Huang X X, Feng L F, Wen W, Chen Q K, Wei L K. 2013. The changes in lipid and fatty acid profiles of devil stinger Inimicus japonicas during the development of embryo and yolk-sac larvae. J. Fish. China, 37 (4): 526–535. (in Chinese with English abstract)

    Article  Google Scholar 

  • Imsland A K, Foss A, Gunnarsson S, Berntssen M H.G, Fitzgerald R, Bonga S W. Ham E V, Nævdal G, Stefansson S O. 2001. The interaction of temperature and salinity on growth and food conversion in juvenile turbot (Scophthalmus maximus). Aquaculture, 198 (3): 353–367.

    Article  Google Scholar 

  • Jobling M. 1988. A review of the physiological and nutritional energetics of cod, Gadus morhua L., with particular reference to growth under farmed conditions. Aquaculture, 70 (1-2): 1–19.

    Article  Google Scholar 

  • Kamler E. 2002. Ontogeny of yolk-feeding fish: an ecological perspective. Rev. Fish Biol. Fish., 12 (1): 79–103.

    Article  Google Scholar 

  • Kjörsvik E, Davenport J, Lönning S. 1984. Osmotic changes during the development of eggs and larvae of the lumpsucker, Cydopterus lumpus L. J. Fish Biol., 24 (3): 311–321.

    Article  Google Scholar 

  • Labonne M, Morize E, Scolan P, Lae R, Dabas E, Bohn M. 2009. Impact of salinity on early life history traits of three estuarine fish species in Senegal. Estuar. Coast. Shelf Sci., 82 (4): 673–681.

    Article  Google Scholar 

  • Laiz-Carrión R, Sangiao-Alvarellos S, Guzmán J M, Martín del Río M P, Soengas J L, Mancera J M. 2005. Growth performance of gilthead sea bream Sparus aurata in different osmotic conditions: implications for osmoregulation and energy metabolism. Aquaculture, 250 (3-4): 849–861.

    Article  Google Scholar 

  • Lin X J. 2008. The effects of salinity on development of fertilizer eggs and larvae of Inimicus japonicus. J. Fujian Fish., (4): 24–26. (in Chinese with English abstract)

    Google Scholar 

  • Liu W, Zhi B J, Zhan P R, Guan H H, Qin D L. 2010. Effects of salinity on haematological biochemistrical indices and liver tissue in juvenile Oncorhynchus keta. Chinese J. Appl. Ecol., 21 (9): 2411–2417. (in Chinese with English abstract)

    Google Scholar 

  • Liu Z Y, Quan H F. 2005. Research on the technique for artificial breeding of Inimicus japonicus. J. Shanghai Fish. Univ., 14 (1): 30–34. (in Chinese with English abstract)

    Google Scholar 

  • Mihelakakis A, Kitajima C. 1994. Effects of salinity and temperature on incubation period, hatching rate, and morphogenesis of the silver sea bream, Sparus sarba (Forskål, 1775). Aquaculture, 126 (3-4): 361–371.

    Article  Google Scholar 

  • Morgan J D. 1998. Energetic aspects of osmoregulation in fish. Diss. Abst. Int. Pt. B-Sci. Eng., 59: 486B.

    Google Scholar 

  • Ohkubo N, Sawaguchi S, Nomura K, Tanaka H, Matsubara T. 2008. Utilization of free amino acids, yolk protein and lipids in developing eggs and yolk-sac larvae of Japanese eel Anguilla japonica. Aquaculture, 282 (1-4): 130–137.

    Article  Google Scholar 

  • Okamoto T, Kurokawa T, Gen K, Murashita K, Nomura K, Kim S K, Matsubara H, Ohta H, Tanaka H. 2009. Influence of salinity on morphological deformities in cultured larvae of Japanese eel, Anguilla japonica, at completion of yolk resorption. Aquaculture, 293 (1-2): 113–118.

    Article  Google Scholar 

  • Ostrowski A D, Watanabe W O, Montgomery F P, Rezek T C, Shafer T H, Morris Jr J A. 2011. Effects of salinity and temperature on the growth, survival, whole body osmolality, and expression of Na+/K+ ATPase mRNA in red porgy (Pagrus pagrus) larvae. Aquaculture, 314 (1-4): 193–201.

    Article  Google Scholar 

  • Overton J L, Bayley M, Paulsen H, Wang T. 2008. Salinity tolerance of cultured Eurasian perch, Perca fluviatilis L.: effects on growth and on survival as a function of temperature. Aquaculture, 277 (3-4): 282–286.

    Article  Google Scholar 

  • Rønnestad I, Fyhn H J, Gravningen K. 1992. The importance of free amino acids to the energy metabolism of eggs and larvae of turbot (Scophthalmus maximus). Mar. Biol., 114 (4): 517–525.

    Article  Google Scholar 

  • Rønnestad I, Fyhn H J. 1993. Metabolic aspects of free amino acids in developing marine fish eggs and larvae. Rev. Fish. Sci., 1 (3): 239–259.

    Article  Google Scholar 

  • Saoud I P, Kreydiyyeh S, Chalfoun A, Fakih M. 2007. Influence of salinity on survival, growth, plasma osmolality and gill Na+-K+-ATPase activity in the rabbitfish Siganus rivulatus. J. Exp. Mar. Biol. Ecol., 348 (1-2): 183–190.

    Article  Google Scholar 

  • Sha X S, Ruan H C, He G F. 1981. The development of the egg and larval stages of the lumpfish, Inimicus japonicus (C. and V.). Oceanol. Limnol. Sinica, 12 (4): 365–373. (in Chinese with English abstract)

    Google Scholar 

  • Shi Z H, Chen B, Peng S M, Chen C, Wang J G, Fu R B, Liu M H. 2008. The morphological change under salinity stress in development of yolk sac larvae of Epinephelus malabaricus. Oceanol. Limnol. Sinica, 39 (3): 222–227. (in Chinese with English abstract)

    Google Scholar 

  • Shi Z H, Huang X X, Fu R B, Wang H P, Luo H Z, Chen B, Liu M H, Zhang D. 2008. Salinity stress on embryos and early larval stages of the pomfret Pampus punctatissimus. Aquaculture, 275 (1-4): 306–310.

    Article  Google Scholar 

  • Shi Z H, Peng S M, Yin Y Q, Luo H Z, Ni M L. 2009. Morphological changes of embryo and yolk sac larvae of barred knifejaw (Oplegnathus fascltus) under salinity stress. Chinese J. Ecol., 28 (3): 471–476. (in Chinese with English abstract)

    Google Scholar 

  • Shi Z H, Xia L J, Wang J G, Lu J X, Zhao R X, Wang H P, Xie L F. 2004. Effect of salinity on embryonic development and larval growth of Dentex tumifrons Temminck et Schlegel. J. Fish. China, 28 (5): 599–602. (in Chinese with English abstract)

    Google Scholar 

  • Sucré E, Bossus M, Bodinier C, Boulo V, Charmantier G, Charmantier-Daures M, Cucchi P. 2013. Osmoregulatory response to low salinities in the European sea bass embryos: a multi-site approach. J. Comp. Physiol. B, 183 (1): 83–97.

    Article  Google Scholar 

  • Tian X L, Wang G D, Dong S L, Fang J H. 2010. Effects of salinity and temperature on growth, osmophysiology and energy budget of tongue sole (Cynoglossus semilaevis Günther). J. Fish. Sci. China, 17 (4): 771–782. (in Chinese with English abstract)

    Google Scholar 

  • Varsamos S, Nebel C, Charmantier G. 2005. Ontogeny of osmoregulation in postembryonic fish: a review. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 141 (4): 401–429.

    Article  Google Scholar 

  • Vetter R D, Hodson R E, Arnold C. 1983. Energy metabolism in a rapidly developing marine fish egg, the red drum (Sciaenops ocellata). Can. J. Fish. Aquat. Sci., 40 (5): 627–634.

    Article  Google Scholar 

  • Wang H S, Fang Q S, Zheng L Y. 2002. Effects of salinity on hatching rates and survival activity index of the larvae of Epinephelus akaara. J. Fish. China, 26 (4): 344–350. (in Chinese with English abstract)

    Google Scholar 

  • Wang H S. 2002. Effects of salinity on egg development and growth, larval and juvenile survival rate of Pagrosomus major. J. Fish. Sci. China, 9 (1): 33–38. (in Chinese with English abstract)

    Google Scholar 

  • Wang S L, Zhou Y, Zhu X M. 2012a. Research advances on several factors affecting energy budget of fish. Chinese Fish. Qual. Stand., 2 (4): 61–67. (in Chinese with English abstract)

    Google Scholar 

  • Wang Y R, Li E C, Chen L Q, Wang X D, Zhang F Y, Gao L J, Long L N. 2012b. Effect of acute salinity stress on soluble protein, hemocyanin, haemolymph glucose and hepatopancreas glycogen of Eriocheir sinensis. Acta Hydrobiol. Sinica, 36 (6): 1056–1062. (in Chinese with English abstract)

    Article  Google Scholar 

  • Wen W, Huang X X, Chen Q K, Feng L F, Wei L K. 2013. Temperature effects on early development and biochemical dynamics of a marine fish, Inimicus japonicus. J. Exp. Mar. Biol. Ecol., 442: 22–29.

    Article  Google Scholar 

  • Wiegand M D. 1996. Composition, accumulation and utilization of yolk lipids in teleost fish. Rev. Fish Biol. Fish., 6 (3): 259–286.

    Article  Google Scholar 

  • Xu L W, Feng J, Guo Z X, Lin H Z, Guo G X. 2008. Effect of salinity on hematology and gill Na+-K+ ATPase activity of juvenile cobia, Rachycentron canadum Linnaeus. Mar. Environ. Sci., 27 (6): 602–606. (in Chinese with English abstract)

    Google Scholar 

  • Xu Y J, Liu X Z, Wang Y Y, Qu J Z. 2009. Effects of temperature and salinity on embryonic development and starving tolerance of newly hatched larvae of rock bream Oplegnathus fasciatus. Prog. Fish. Sci., 30 (3): 25–31. (in Chinese with English abstract)

    Google Scholar 

  • Yan J Q, Huang X X, Ma S J, Huang Z Z, Lü W Q. 2011. Culture condition and cellular biochemical composition of two microalgae Oocystis solitaria and Selenastrum sp. Chinese J. Ecol., 30 (12): 2761–2766. (in Chinese with English abstract)

    Google Scholar 

  • Yang Z, Chen Y F. 2006. Salinity tolerance of embryos of obscure puffer Takifugu obscurus. Aquaculture, 253 (1-4): 393–397.

    Article  Google Scholar 

  • You H Z, Yang Z Q, Ge S G, Jiang Z Q. 2009. Effect of different salinity on biochemical composition and energy budget for Platichthys stellatus juveniles. Hebei Fisheries, 185 (5): 16–19. (in Chinese with English abstract).

    Google Scholar 

  • Yu D G, Yang Y Q, Wang H Y, Xie J, Yu E M, Wang G J, Gong W B. 2011b. The effect of salinity change on physiology and biochemistry of Epinephelus coioides. J. Fish. China, 35 (5): 719–728. (in Chinese with English abstract)

    Google Scholar 

  • Yu N, Li J E, Ou Y J, Fan C Y, Zhang J S. 2011a. Effects of salinity stresses on gill Na+/K+-ATPase (NAK) activity and body moisture in juvenile grey mullet Mugil cephalus. Chinese J. Zool., 46 (1): 93–99. (in Chinese with English abstract)

    Google Scholar 

  • Yuan C Y, Cui Q M. 2004. A review: influence of salinity on development and growth of aquatic animals in aquaculture. Fish. Sci., 23 (5): 41–42. (in Chinese with English abstract)

    Google Scholar 

  • Zeng L, Lei J L, Liu B, Hong W S, Ai C X. 2014. Effects of salinities on muscle amino acid and fatty acid composition of juvenile turbot(Scophthalmus maximus). Marine Sciences. 38 (12): 40–47 (in Chinese with English abstract)

    Google Scholar 

  • Zhang L Z, Yang J H, Liu J Y, Zhuang P, Zhao F, Qu L. 2009. Effects of water temperature, salinity, pH, and anaesthetics on oxygen consumption rate of juvenile Siganus canaliculatus. Chinese J. Ecol., 28 (8): 1494–1498. (in Chinese with English abstract)

    Google Scholar 

  • Zhuang Q Q, Zhao J L, Zhao L H, Chang J J. 2012. Effects of salinity stress on the adjustment of branchial chloride cells in Oreochromis niloticus. Chinese J. Ecol., 31 (10): 2619–2624. (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgment

The authors thank Mr. CHEN Qingkai for his assistance during larviculturing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuxiong Huang  (黄旭雄).

Additional information

Supported by the Innovation Project of the Shanghai Education Commission, China (No. 12ZZ166) and the Shanghai Universities First-Class Disciplines Project of Fisheries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Huang, X. & Wen, W. Influence of salinity on the early development and biochemical dynamics of a marine fish, Inimicus japonicus. J. Ocean. Limnol. 36, 427–437 (2018). https://doi.org/10.1007/s00343-017-6223-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-017-6223-1

Keyword

Navigation