Influence of salinity on the early development and biochemical dynamics of a marine fish, Inimicus japonicus

  • Xu Gong (龚续)
  • Xuxiong Huang (黄旭雄)
  • Wen Wen (温文)
Article
  • 27 Downloads

Abstract

Fertilised eggs of the devil stringer (Inimicus japonicus) were incubated at different salinity levels (21, 25, 29, 33, and 37), and then the hatching performances, morphological parameters, and biochemical composition (protein, lipid and carbohydrate) of the larvae were assayed to determine the influence of salinity on the early development of I. japonicus. The tested salinity levels did not affect the times of hatching or mouth opening for yolk-sac larvae. However, the salinity significantly influenced the hatching and survival rates of open-mouthed larvae, as well as the morphology of yolk-sac larvae. The data indicated that 30.5 to 37.3 and 24.4 to 29.8 were suitable salinity ranges for the survival of embryos and larvae of I. japonicus, respectively. Larvae incubated at a salinity level of 29 had the greatest full lengths, and decreasing yolk volume was positively correlated with the environmental salinity. With increasing salinity, the individual dry weights of newly hatched larvae or open-mouthed larvae decreased significantly. Newly hatched larvae incubated at a salinity level of 29 had the greatest metabolic substrate contents and gross energy levels, while the openmouthed larvae’s greatest values occurred at a salinity level of 25. Larvae incubated in the salinity range of 33 to 37 had the lowest nutritional reserves and energy values. Thus, the I. japonicus yolk-sac larvae acclimated more readily to the lower salinity level than the embryos, and higher salinity levels negatively influenced larval growth and development. In conclusion, the environmental salinity level should be maintained at 29–33 during embryogenesis and at 25–29 during early larval development for this species. Our results can be used to provide optimum aquaculture conditions for the early larval development of I. japonicus.

Keywords

biochemical dynamics development embryo Inimicus japonicus salinity yolk-sac larva 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

The authors thank Mr. CHEN Qingkai for his assistance during larviculturing.

References

  1. Alderdice D F, Hourston A S. 1985. Factors influencing development and survival of Pacific herring (Clupea harengus pallasi) eggs and larvae to beginning of exogenous feeding. Can. J. Fish. Aquat. Sci., 42 (S1): S56–S68.CrossRefGoogle Scholar
  2. Alderdice D F, Rao T R, Rosenthal H. 1979. Osmotic responses of eggs and larvae of the Pacific herring to salinity and cadmium. Helgoländer Wiss. Meeresunters., 32(4): 508–538.CrossRefGoogle Scholar
  3. Berlinsky D L, Taylor J C, Howell R A, Bradley T M, Smith T I J. 2004. The effects of temperature and salinity on early life stages of black sea bass Centropristis striata. J. World Aquacult. Soc., 35(3): 335–344.CrossRefGoogle Scholar
  4. Bodinier C, Sucré E, Lecurieux-Belfond L, Blondeau-Bidet E, Charmantier G. 2010. Ontogeny of osmoregulation and salinity tolerance in the gilthead sea bream Sparus aurata. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 157(3): 220–228.CrossRefGoogle Scholar
  5. Boeuf G, Payan P. 2001. How should salinity influence fish growth? Comp. Biochem. Physiol. C Toxicol. Pharmacol., 130(4): 411–423.CrossRefGoogle Scholar
  6. Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72(1–2): 248–253.CrossRefGoogle Scholar
  7. Brett J R. 1979. Environmental factors and growth. In: Hoar W S, Randall D J eds. Fish Physiology. Academic Press, New York, USA. p.599–675.Google Scholar
  8. Cai W C, Ou Y J, Li J E. 2010. Effects of water salinity on embryonic development of rock bream Oplegnathus fasciatus. Chinese J. Ecol., 29(5): 951–956. (in Chinese with English abstract)Google Scholar
  9. Cetta C M, Capuzzo J M. 1982. Physiological and biochemical aspects of embryonic and larval development of the winter flounder Pseudopleuronectes americanus. Mar. Biol., 71(3): 327–337.CrossRefGoogle Scholar
  10. Conides A J, Glamuzina B. 2001. Study on the early larval development and growth of the red porgy, “Pagrus pagrus” with emphasis on the mass mortalities observed during this phase. Sci Mar., 65(3): 193–200.CrossRefGoogle Scholar
  11. Davenport J, Lønning S, Kjørsvik E. 1981. Osmotic and structural changes during early development of eggs and larvae of the cod, Gadus morhua L. J. Fish Biol., 19(3): 317–331.CrossRefGoogle Scholar
  12. DuBois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28(3): 350–356.CrossRefGoogle Scholar
  13. Fashina-Bombata H A, Busari A N. 2003. Influence of salinity on the developmental stages of African catfish Heterobranchus longifilis (Valenciennes, 1840). Aquaculture, 224(1–4): 213–222.CrossRefGoogle Scholar
  14. Fielder D S, Allan G L, Pepperall D, Pankhurst P M. 2007. The effects of changes in salinity on osmoregulation and chloride cell morphology of juvenile Australian snapper, Pagrus auratus. Aquaculture, 272(1–4): 656–666.CrossRefGoogle Scholar
  15. Fielder D S, Bardsley W J, Allan G L, Pankhurst P M. 2005. The effects of salinity and temperature on growth and survival of Australian snapper, Pagrus auratus larvae. Aquaculture, 250(1-2), 201–214.CrossRefGoogle Scholar
  16. Finn R N, Fyhn H J, Evjen M S. 1995a. Physiological energetics of developing embryos and yolk-sac larvae of Atlantic cod (Gadus morhua). I. Respiration and nitrogen metabolism. Mar. Biol., 124(3): 355–369.CrossRefGoogle Scholar
  17. Finn R N, Rønnestad I, Fyhn H J. 1995b. Respiration, nitrogen and energy metabolism of developing yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus L.). Comp. Biochem. Physiol. A Physiol., 111(4): 647–671.CrossRefGoogle Scholar
  18. Folch J, Lees M, Stanley G H S. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 226(1): 497–509.Google Scholar
  19. Hart P R, Purser G J. 1995. Effects of salinity and temperature on eggs and yolk sac larvae of the greenback flounder (Rhombosolea tapirina Günther, 1862). Aquaculture, 136(3–4): 221–230.CrossRefGoogle Scholar
  20. Henken A M, Lucas H, Tijssen P A T, Machiels M A M. 1986. A comparison between methods used to determine the energy content of feed, fish and faeces samples. Aquaculture, 58(3–4): 195–201.CrossRefGoogle Scholar
  21. Holliday F G T, Blaxter J H S. 1960. The effects of salinity on the developing eggs and larvae of the herring. J. Mar. Biol. Assoc. U.K., 39(3): 591–603.CrossRefGoogle Scholar
  22. Holliday F G T. 1969. The effects of salinity on the eggs and larvae of teleosts. In: Hoar W S, Randall D J eds. Fish Physiology. Academic Press, New York, USA. p.293–311.Google Scholar
  23. Hu X C, Zhao Y L, Zhou Z L. 2008. Effect of salinity on the biochemical composition and energy budget in starved juvenile sleeper Odontobutis potamophila (Günther). Fisheries Sci. 27(3): 109–113Google Scholar
  24. Huang X X, Feng L F, Wen W, Chen Q K, Wei L K. 2013. The changes in lipid and fatty acid profiles of devil stinger Inimicus japonicas during the development of embryo and yolk-sac larvae. J. Fish. China, 37(4): 526–535. (in Chinese with English abstract)CrossRefGoogle Scholar
  25. Imsland A K, Foss A, Gunnarsson S, Berntssen M H.G, Fitzgerald R, Bonga S W. Ham E V, Nævdal G, Stefansson S O. 2001. The interaction of temperature and salinity on growth and food conversion in juvenile turbot (Scophthalmus maximus). Aquaculture, 198(3): 353–367.CrossRefGoogle Scholar
  26. Jobling M. 1988. A review of the physiological and nutritional energetics of cod, Gadus morhua L., with particular reference to growth under farmed conditions. Aquaculture, 70(1–2): 1–19.CrossRefGoogle Scholar
  27. Kamler E. 2002. Ontogeny of yolk-feeding fish: an ecological perspective. Rev. Fish Biol. Fish., 12(1): 79–103.CrossRefGoogle Scholar
  28. Kjörsvik E, Davenport J, Lönning S. 1984. Osmotic changes during the development of eggs and larvae of the lumpsucker, Cydopterus lumpus L. J. Fish Biol., 24(3): 311–321.CrossRefGoogle Scholar
  29. Labonne M, Morize E, Scolan P, Lae R, Dabas E, Bohn M. 2009. Impact of salinity on early life history traits of three estuarine fish species in Senegal. Estuar. Coast. Shelf Sci., 82(4): 673–681.CrossRefGoogle Scholar
  30. Laiz-Carrión R, Sangiao-Alvarellos S, Guzmán J M, Martín del Río M P, Soengas J L, Mancera J M. 2005. Growth performance of gilthead sea bream Sparus aurata in different osmotic conditions: implications for osmoregulation and energy metabolism. Aquaculture, 250(3–4): 849–861.CrossRefGoogle Scholar
  31. Lin X J. 2008. The effects of salinity on development of fertilizer eggs and larvae of Inimicus japonicus. J. Fujian Fish., (4): 24–26. (in Chinese with English abstract)Google Scholar
  32. Liu W, Zhi B J, Zhan P R, Guan H H, Qin D L. 2010. Effects of salinity on haematological biochemistrical indices and liver tissue in juvenile Oncorhynchus keta. Chinese J. Appl. Ecol., 21(9): 2411–2417. (in Chinese with English abstract)Google Scholar
  33. Liu Z Y, Quan H F. 2005. Research on the technique for artificial breeding of Inimicus japonicus. J. Shanghai Fish. Univ., 14(1): 30–34. (in Chinese with English abstract)Google Scholar
  34. Mihelakakis A, Kitajima C. 1994. Effects of salinity and temperature on incubation period, hatching rate, and morphogenesis of the silver sea bream, Sparus sarba (Forskål, 1775). Aquaculture, 126(3–4): 361–371.CrossRefGoogle Scholar
  35. Morgan J D. 1998. Energetic aspects of osmoregulation in fish. Diss. Abst. Int. Pt. B-Sci. Eng., 59: 486B.Google Scholar
  36. Ohkubo N, Sawaguchi S, Nomura K, Tanaka H, Matsubara T. 2008. Utilization of free amino acids, yolk protein and lipids in developing eggs and yolk-sac larvae of Japanese eel Anguilla japonica. Aquaculture, 282(1–4): 130–137.CrossRefGoogle Scholar
  37. Okamoto T, Kurokawa T, Gen K, Murashita K, Nomura K, Kim S K, Matsubara H, Ohta H, Tanaka H. 2009. Influence of salinity on morphological deformities in cultured larvae of Japanese eel, Anguilla japonica, at completion of yolk resorption. Aquaculture, 293(1–2): 113–118.CrossRefGoogle Scholar
  38. Ostrowski A D, Watanabe W O, Montgomery F P, Rezek T C, Shafer T H, Morris Jr J A. 2011. Effects of salinity and temperature on the growth, survival, whole body osmolality, and expression of Na+/K+ATPase mRNA in red porgy (Pagrus pagrus) larvae. Aquaculture, 314(1–4): 193–201.CrossRefGoogle Scholar
  39. Overton J L, Bayley M, Paulsen H, Wang T. 2008. Salinity tolerance of cultured Eurasian perch, Perca fluviatilis L.: effects on growth and on survival as a function of temperature. Aquaculture, 277(3–4): 282–286.CrossRefGoogle Scholar
  40. Rønnestad I, Fyhn H J, Gravningen K. 1992. The importance of free amino acids to the energy metabolism of eggs and larvae of turbot (Scophthalmus maximus). Mar. Biol., 114(4): 517–525.CrossRefGoogle Scholar
  41. Rønnestad I, Fyhn H J. 1993. Metabolic aspects of free amino acids in developing marine fish eggs and larvae. Rev. Fish. Sci., 1(3): 239–259.CrossRefGoogle Scholar
  42. Saoud I P, Kreydiyyeh S, Chalfoun A, Fakih M. 2007. Influence of salinity on survival, growth, plasma osmolality and gill Na +-K +-ATPase activity in the rabbitfish Siganus rivulatus. J. Exp. Mar. Biol. Ecol., 348(1–2): 183–190.CrossRefGoogle Scholar
  43. Sha X S, Ruan H C, He G F. 1981. The development of the egg and larval stages of the lumpfish, Inimicus japonicus (C. and V.). Oceanol. Limnol. Sinica, 12(4): 365–373. (in Chinese with English abstract)Google Scholar
  44. Shi Z H, Chen B, Peng S M, Chen C, Wang J G, Fu R B, Liu M H. 2008. The morphological change under salinity stress in development of yolk sac larvae of Epinephelus malabaricus. Oceanol. Limnol. Sinica, 39(3): 222–227. (in Chinese with English abstract)Google Scholar
  45. Shi Z H, Huang X X, Fu R B, Wang H P, Luo H Z, Chen B, Liu M H, Zhang D. 2008. Salinity stress on embryos and early larval stages of the pomfret Pampus punctatissimus. Aquaculture, 275(1–4): 306–310.CrossRefGoogle Scholar
  46. Shi Z H, Peng S M, Yin Y Q, Luo H Z, Ni M L. 2009. Morphological changes of embryo and yolk sac larvae of barred knifejaw (Oplegnathus fascltus) under salinity stress. Chinese J. Ecol., 28(3): 471–476. (in Chinese with English abstract)Google Scholar
  47. Shi Z H, Xia L J, Wang J G, Lu J X, Zhao R X, Wang H P, Xie L F. 2004. Effect of salinity on embryonic development and larval growth of Dentex tumifrons Temminck et Schlegel. J. Fish. China, 28(5): 599–602. (in Chinese with English abstract)Google Scholar
  48. Sucré E, Bossus M, Bodinier C, Boulo V, Charmantier G, Charmantier-Daures M, Cucchi P. 2013. Osmoregulatory response to low salinities in the European sea bass embryos: a multi-site approach. J. Comp. Physiol. B, 183(1): 83–97.CrossRefGoogle Scholar
  49. Tian X L, Wang G D, Dong S L, Fang J H. 2010. Effects of salinity and temperature on growth, osmophysiology and energy budget of tongue sole (Cynoglossus semilaevis Günther). J. Fish. Sci. China, 17(4): 771–782. (in Chinese with English abstract)Google Scholar
  50. Varsamos S, Nebel C, Charmantier G. 2005. Ontogeny of osmoregulation in postembryonic fish: a review. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 141(4): 401–429.CrossRefGoogle Scholar
  51. Vetter R D, Hodson R E, Arnold C. 1983. Energy metabolism in a rapidly developing marine fish egg, the red drum (Sciaenops ocellata). Can. J. Fish. Aquat. Sci., 40(5): 627–634.CrossRefGoogle Scholar
  52. Wang H S, Fang Q S, Zheng L Y. 2002. Effects of salinity on hatching rates and survival activity index of the larvae of Epinephelus akaara. J. Fish. China, 26(4): 344–350. (in Chinese with English abstract)Google Scholar
  53. Wang H S. 2002. Effects of salinity on egg development and growth, larval and juvenile survival rate of Pagrosomus major. J. Fish. Sci. China, 9(1): 33–38. (in Chinese with English abstract)Google Scholar
  54. Wang S L, Zhou Y, Zhu X M. 2012a. Research advances on several factors affecting energy budget of fish. Chinese Fish. Qual. Stand., 2(4): 61–67. (in Chinese with English abstract)Google Scholar
  55. Wang Y R, Li E C, Chen L Q, Wang X D, Zhang F Y, Gao L J, Long L N. 2012b. Effect of acute salinity stress on soluble protein, hemocyanin, haemolymph glucose and hepatopancreas glycogen of Eriocheir sinensis. Acta Hydrobiol. Sinica, 36(6): 1056–1062. (in Chinese with English abstract)CrossRefGoogle Scholar
  56. Wen W, Huang X X, Chen Q K, Feng L F, Wei L K. 2013. Temperature effects on early development and biochemical dynamics of a marine fish, Inimicus japonicus. J. Exp. Mar. Biol. Ecol., 442: 22–29.CrossRefGoogle Scholar
  57. Wiegand M D. 1996. Composition, accumulation and utilization of yolk lipids in teleost fish. Rev. Fish Biol. Fish., 6(3): 259–286.CrossRefGoogle Scholar
  58. Xu L W, Feng J, Guo Z X, Lin H Z, Guo G X. 2008. Effect of salinity on hematology and gill Na+-K+ATPase activity of juvenile cobia, Rachycentron canadum Linnaeus. Mar. Environ. Sci., 27(6): 602–606. (in Chinese with English abstract)Google Scholar
  59. Xu Y J, Liu X Z, Wang Y Y, Qu J Z. 2009. Effects of temperature and salinity on embryonic development and starving tolerance of newly hatched larvae of rock bream Oplegnathus fasciatus. Prog. Fish. Sci., 30(3): 25–31. (in Chinese with English abstract)Google Scholar
  60. Yan J Q, Huang X X, Ma S J, Huang Z Z, Lü W Q. 2011. Culture condition and cellular biochemical composition of two microalgae Oocystis solitaria and Selenastrum sp. Chinese J. Ecol., 30(12): 2761–2766. (in Chinese with English abstract)Google Scholar
  61. Yang Z, Chen Y F. 2006. Salinity tolerance of embryos of obscure puffer Takifugu obscurus. Aquaculture, 253(1–4): 393–397.CrossRefGoogle Scholar
  62. You H Z, Yang Z Q, Ge S G, Jiang Z Q. 2009. Effect of different salinity on biochemical composition and energy budget for Platichthys stellatus juveniles. Hebei Fisherie s, 185(5): 16–19. (in Chinese with English abstract).Google Scholar
  63. Yu D G, Yang Y Q, Wang H Y, Xie J, Yu E M, Wang G J, Gong W B. 2011b. The effect of salinity change on physiology and biochemistry of Epinephelus coioides. J. Fish. China, 35(5): 719–728. (in Chinese with English abstract)Google Scholar
  64. Yu N, Li J E, Ou Y J, Fan C Y, Zhang J S. 2011a. Effects of salinity stresses on gill Na+/K+-ATPase (NAK) activity and body moisture in juvenile grey mullet Mugil cephalus. Chinese J. Zool., 46(1): 93–99. (in Chinese with English abstract)Google Scholar
  65. Yuan C Y, Cui Q M. 2004. A review: influence of salinity on development and growth of aquatic animals in aquaculture. Fish. Sci., 23(5): 41–42. (in Chinese with English abstract)Google Scholar
  66. Zeng L, Lei J L, Liu B, Hong W S, Ai C X. 2014. Effects of salinities on muscle amino acid and fatty acid composition of juvenile turbot(Scophthalmus maximus). Marine Sciences. 38(12): 40–47 (in Chinese with English abstract)Google Scholar
  67. Zhang L Z, Yang J H, Liu J Y, Zhuang P, Zhao F, Qu L. 2009. Effects of water temperature, salinity, pH, and anaesthetics on oxygen consumption rate of juvenile Siganus canaliculatus. Chinese J. Ecol., 28(8): 1494–1498. (in Chinese with English abstract)Google Scholar
  68. Zhuang Q Q, Zhao J L, Zhao L H, Chang J J. 2012. Effects of salinity stress on the adjustment of branchial chloride cells in Oreochromis niloticus. Chinese J. Ecol., 31(10): 2619–2624. (in Chinese with English abstract)Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xu Gong (龚续)
    • 1
  • Xuxiong Huang (黄旭雄)
    • 1
    • 2
    • 3
    • 4
  • Wen Wen (温文)
    • 1
  1. 1.Key Laboratory of Freshwater Fishery Germplasm ResourcesMinistry of Agriculture, P. R. ChinaShanghaiChina
  2. 2.Shanghai Engineering Research Center of AquacultureShanghaiChina
  3. 3.Shanghai University Knowledge Service PlatformShanghai Ocean University Aquatic Animal Breeding Center (ZF1206)ShanghaiChina
  4. 4.National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University)ShanghaiChina

Personalised recommendations