Skip to main content

Evaluation of long-term corrosion durability and self-healing ability of scratched coating systems on carbon steel in a marine environment

Abstract

Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel from corrosion in a marine environment. Two environmental additives, glass fibers and thiourea, were applied in the middle coat to modify the coating system. The long-term corrosion durability and self-healing ability of the scratched coating system were evaluated by multiple methods. Results of the electrochemical technologies indicated that the coating system that contained 0.5 wt.% fibers and 0.5 wt.% thiourea presented good corrosion protection and self-healing for carbon steel when immersed in 3.5% NaCl for 120 d. Evolution of localized corrosion factors with time, as obtained from the current distribution showed that fibers combined with thiourea could inhibit the occurrence of local corrosion in scratched coating systems and retarded the corrosion development significantly. Surface characterization suggested that adequate thiourea could be absorbed uniformly on fibers for a long time to play an important role in protecting the carbon steel. Finally, schematic models were established to demonstrate the action of fibers and thiourea on the exposed surface of the carbon steel and the scratched coating system in the entire deterioration process.

This is a preview of subscription content, access via your institution.

References

  1. Abdel-Rehim S S, Khaled K F, Abd-ElshafiN S. 2006. Electrochemical frequency modulation as a new technique for monitoring corrosion inhibition of iron in acid media by new thiourea derivative. Electrochim. Acta, 51(16):3269–3277.

    Article  Google Scholar 

  2. Almeida E C, Diniz A V, Trava-Airoldi V J, Ferreira N G. 2005. Electrochemical characterization of doped diamond-coated carbon fibers at different boron concentrations. Thin Solid Films, 485 (1-2) 241–246.

    Article  Google Scholar 

  3. Balusamy T, Nishimura T. 2016. In-situ monitoring of the local corrosion process of scratched epoxy coated carbon steel in simulated pore solution containing varying percentage of chloride ions by localized electrochemical impedance spectroscopy. Electrochim. Acta, 199: 305–313.

    Article  Google Scholar 

  4. Blustein G, Di Sarli A R, Jaén J A, Romagnoli R, Del Amo B. 2007. Study of iron benzoate as a novel steel corrosion inhibitor pigment for protective paint films. Corros. Sci., 49(11):4202–4231.

    Article  Google Scholar 

  5. Bonnel K, Le Pen C, Pébère N. 1999. E.I.S. characterization of protective coatings on aluminium alloys. Electrochim. Acta, 44(24):4259–4267.

    Google Scholar 

  6. Campos I, Palomar-Pardavé M, Amador A, VillaVelázquez C, Hadad J. 2007. Corrosion behavior of boride layers evaluated by the EIS technique. Appl. Surf. Sci., 253(23):9061–9066.

    Article  Google Scholar 

  7. Chen B, Guizar-Sicairos M, Xiong G, Shemilt L, Diaz A, Nutter J, Burdet N, Huo S G, Mancuso J, Monteith A, Vergeer F, Burgess A, Robinson I. 2013. Threedimensional structure analysis and percolation properties of a barrier marine coating. Sci. Rep., 3: 1177.

    Article  Google Scholar 

  8. Chen S Q, Wang P, Zhang D. 2014. Corrosion behavior of copper under biofilm of sulfate-reducing bacteria. Corros. Sci., 87: 407–415.

    Article  Google Scholar 

  9. Cheng Y L, Zhang Z, Cao F H, Li J F, Zhang J Q, Wang J M, Cao C N. 2004. A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers. Corros. Sci., 46(7):1649–1667.

    Article  Google Scholar 

  10. Conde A, de Damborenea J J. 2002. Electrochemical impedance spectroscopy for studying the degradation of enamel coatings. Corros. Sci., 44(7):1555–1567.

    Article  Google Scholar 

  11. Doherty M, Sykes J M. 2004. Micro-cells beneath organic lacquers: a study using scanning Kelvin probe and scanning acoustic microscopy. Corros. Sci., 46(5):1265–1289.

    Article  Google Scholar 

  12. Ecco L G, Li J, Fedel M, Deflorian F, Pan J. 2014. EIS and in situ AFM study of barrier property and stability of waterborne and solventborne clear coats. Prog. Org. Coat., 77 (3): 600–608.

    Article  Google Scholar 

  13. Fekry A M, Mohamed R R. 2010. Acetyl thiourea chitosan as an eco-friendly inhibitor for mild steel in sulphuric acid medium. Electrochim. Acta, 55(6):1933–1939.

    Article  Google Scholar 

  14. Fouda A S, Soliman A H. 2015. Corrosion protection of carbon steel in hydrochloric acid solutions usingthiourea derivatives. Protection of Metals and Physical Chemistry of Surfaces, 51 (5): 847–860.

    Article  Google Scholar 

  15. Gergely A, Pászti Z, Hakkel O, Drotár E, Mihály J, Kálmán E. 2012. Corrosion protection of cold-rolled steel with alkyd paint coatings composited with submicron-structure typespolypyrrole-modified nano-size alumina and carbon nanotubes. Materials Science and Engineering: B, 177(18):1571–1582.

    Article  Google Scholar 

  16. Gonçalves G S, Baldissera A F, Rodrigues L F Jr, Martini E M A, Ferreira C A. 2011. Alkyd coatings containing polyanilines for corrosion protection of mild steel. Synthetic Metals, 161 (3-4): 313–323.

    Article  Google Scholar 

  17. Han W, Pan C, Wang Z Y, Yu G C. 2014. A study on the initial corrosion behavior of carbon steel exposed to outdoor wet-dry cyclic condition. Corros. Sci., 88: 89–100.

    Article  Google Scholar 

  18. Jorcin J B, Aragon E, Merlatti C, Pébère N. 2006. Delaminated areas beneath organic coating: alocal electrochemical impedance approach. Corros. Sci., 48(7):1779–1790.

    Article  Google Scholar 

  19. Karthik D, Tamilvendan D, Venkatesa Prabhu G. 2014. Study on the inhibition of mild steel corrosion by 1,3-bis-(morpholin-4-yl-phenyl-methyl)-thiourea in hydrochloric acid medium. J. Saudi Chem. Soc., 18 (6): 835–844.

    Article  Google Scholar 

  20. Lin J C, Chang S L, Lee S L. 1999. Corrosion inhibition of steel by thiourea and cations under incomplete cathodic protection in a 3.5% NaCl solution and seawater. J. Appl. Electrochem., 29 (8): 911–918.

    Article  Google Scholar 

  21. Pilbáth A, SzabóT, Telegdi J, Nyikos L. 2012. SECM study of steel corrosion under scratched microencapsulated epoxy resin. Prog. Org. Coat., 75 (4): 480–485.

    Article  Google Scholar 

  22. Raps D, Hack T, Wehr J, Zheludkevich M L, Bastos A C, Ferreira M G S, Nuyken O. 2009. Electrochemical study of inhibitor-containing organic-inorganic hybrid coatings on AA2024. Corros. Sci., 51(5):1012–1021.

    Article  Google Scholar 

  23. Saremi M, Yeganeh M. 2014. Application of mesoporous silica nanocontainers as smart host of corrosion inhibitor in polypyrrole coatings. Corros. Sci., 86: 159–170.

    Article  Google Scholar 

  24. Schneider O, Kelly R G. 2007. Localized coating failure of epoxy-coated aluminium alloy 2024-T3 in 0.5 M NaCl solutions: correlation between coatingdegradation, blister formation and local chemistry within blisters. Corros. Sci., 49 (2): 594–619.

    Article  Google Scholar 

  25. Shao Y W, Jia C, Meng G Z, Zhang T, Wang F H. 2009. The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel. Corros. Sci., 51 (2): 371–379.

    Article  Google Scholar 

  26. Shi W, Dong Z H, Kong D J, Guo X P. 2013. Application of wire beam electrode technique to investigate initiation and propagation of rebar corrosion. Cement Concrete Res., 48: 25–33.

    Article  Google Scholar 

  27. Tan Y J, Aung N N, Liu T. 2006a. Novel corrosion experiments using the wire beam electrode. (I) Studying electrochemical noise signatures from localized corrosion processes. Corros. Sci., 4 8(1): 23–38.

    Google Scholar 

  28. Tan Y J, Liu T, Aung N N. 2006b. Novel corrosion experiments using the wire beam electrode: (III) Measuring electrochemical corrosion parameters from both the metallic and electrolytic phases. Corros. Sci., 4 8(1): 53–66.

    Article  Google Scholar 

  29. Tan Y J. 1991. The effects of inhomogeneity in organic coatings on electrochemical measurements using a wire beam electrode: Part I. Prog. Org. Coat., 19 (1): 89–94.

    Article  Google Scholar 

  30. Thu Le Q, Bonnet G, Compere C, Trong Le H, Touzain S. 2005. Modified wire beam electrode: a useful tool to evaluate compatibility between organic coatings and cathodic protection. Prog. Org. Coat., 52 (2): 118–125.

    Article  Google Scholar 

  31. Twite R L, Bierwagen G P. 1998. Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Prog. Org. Coat., 33 (2): 91–100.

    Article  Google Scholar 

  32. Wang P, Zhang D, Qiu R, Wan Y, Wu J J. 2014. Green approach to fabrication of a super-hydrophobic film on copper and the consequent corrosion resistance. Corros. Sci., 80: 366–373.

    Article  Google Scholar 

  33. Wang T, Tan Y J. 2006. Understanding electrodeposition of polyaniline coatings for corrosion prevention applications using the wire beam electrode method. Corros. Sci., 48(8):2274–2290.

    Article  Google Scholar 

  34. Welle A, Liao J D, Kaiser K, Grunze M, Mäder U, Blank N. 1997. Interactions of N, N'-dimethylaminoethanol with steel surfaces in alkaline and chlorine containing solutions. Appl. Surf. Sci., 119 (3-4): 185–198.

    Article  Google Scholar 

  35. Yabuki A, Kawashima A, Fathona I W. 2014. Self-healing polymer coatings with cellulose nanofibers served as pathways for the release of a corrosion inhibitor. Corros. Sci., 85: 141–146.

    Article  Google Scholar 

  36. Yeganeh M, Keyvani A. 2016. The effect of mesoporous silica nanocontainers incorporation on the corrosion behavior of scratched polymer coatings. Prog. Org. Coat., 90: 296–303.

    Article  Google Scholar 

  37. Zhang B B, Zhao X, Li Y T, Hou B R. 2016. Fabrication of durable anticorrosion superhydrophobic surfaces on aluminum substrates via a facile one-step electrodeposition approach. RSC Adv., 6: 35455–35465.

    Article  Google Scholar 

  38. Zhang J T, Hu J M, Zhang J Q, Cao C N. 2004. Studies of impedance models and water transport behaviors of polypropylene coated metals in NaCl solution. Prog. Org. Coat., 49 (4): 293–301.

    Article  Google Scholar 

  39. Zhang K Y, Wang L D, Sun W, Liu G C. 2014. Corrosion inhibitor embedded spherical micro-pits fabricated using cetyltrimethyl ammonium bromide as etching template for self-healing corrosion protection. Corros. Sci., 88: 444–451.

    Article  Google Scholar 

  40. Zhao X, Liu S, Wang X T, Hou B R. 2014. Surface modification of ZrO 2 nanoparticles with styrene coupling agent and its effect on the corrosion behaviour of epoxy coating.

  41. Chin. J. Oceanol. Limnol., 32(5):1163–1171.

  42. Zhao X, Wang J, Wang Y H, Kong T, Zhong L, Zhang W. 2007. Analysis of deterioration process of organic protective coating using EIS assisted by SOM network. Electrochem. Commun., 9(6):1394–1399.

    Article  Google Scholar 

  43. Zheludkevich M L, Poznyak S K, Rodrigues L M, Raps D, Hack T, Dick L F, Nunes T, Ferreira M G S. 2010. Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor. Corros. Sci., 52 (2): 602–611.

    Article  Google Scholar 

  44. Zhou X, Yang H Y, Wang F H. 2011. Corrosion Inhibition by Sorbitol/Diethylenetriamine Condensation Product for Carbon Steel in 3.5% NaCl Saturated Ca(OH) 2 Solution. Acta Phys. Chim. Sin., 27 (3): 647–654.

    Google Scholar 

  45. Zin I M, Lyon S B, Hussain A. 2005. Under-film corrosion of epoxy-coated galvanised steel: an EIS and SVET study of the effect of inhibition at defects. Prog. Org. Coat., 52 (2): 126–135.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xia Zhao.

Additional information

Supported by the Open Project of Key Laboratory of Marine New Materials of CNITECH (No. LMMT-KFKT-2014-008) and the National Basic Research Program of China (973 Program) (No. 2014CB643304)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Chen, C., Xu, W. et al. Evaluation of long-term corrosion durability and self-healing ability of scratched coating systems on carbon steel in a marine environment. Chin. J. Ocean. Limnol. 35, 1094–1107 (2017). https://doi.org/10.1007/s00343-017-6132-3

Download citation

Keywords

  • scratched coating system
  • corrosion
  • carbon steel
  • long-term
  • self-healing