Skip to main content
Log in

Effects of internal tidal dissipation and self-attraction and loading on semidiurnal tides in the Bohai Sea, Yellow Sea and East China Sea: a numerical study

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

A parameterized internal tide dissipation term and self-attraction and loading (SAL) tide term are introduced in a barotropic numerical model to investigate the dynamics of semidiurnal tidal constituents M 2 and S 2 in the Bohai Sea, Yellow Sea and East China Sea (BYECS). The optimal parameters for bottom friction and internal dissipation are obtained through a series of numerical computations. Numerical simulation shows that the tide-generating force contributes 1.2% of M 2 power for the entire BYECS and up to 2.8% for the East China Sea deep basin. SAL tide contributes 4.4% of M 2 power for the BYECS and up to 9.3% for the East China Sea deep basin. Bottom friction plays a major role in dissipating tidal energy in the shelf regions, and the internal tide effect is important in the deep water regions. Numerical experiments show that artificial removal of tide-generating force in the BYECS can cause a significant difference (as much as 30 cm) in model output. Artificial removal of SAL tide in the BYECS can cause even greater difference, up to 40 cm. This indicates that SAL tide should be taken into account in numerical simulations, especially if the tide-generating force is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Chen C S, Beardsley R C, Cowles G. 2006. An Unstructured Grid, Finite-Volume Coastal Ocean Model: FVCOM User Manual. SMAST/UMASSD. p.6–8.

    Google Scholar 

  • Choi B H. 1980. A tidal model of the Yellow Sea and the Eastern China Sea. KORDI Report 80-82. Korea Ocean Research and Development Institute. 72p.

    Google Scholar 

  • Egbert G D, Ray R D. 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405 (6788): 775–778.

    Article  Google Scholar 

  • Fang G, Kwok Y K, Yu K et al. 1999. Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Continental Shelf Research, 19(7): 845–869.

    Article  Google Scholar 

  • Fang G H, Wang Y G, Wei Z X et al. 2004. Empirical cotidal charts of the Bohai, Yellow, and East China Seas from 10 years of TOPEX/Poseidon altimetry. Journal of Geophysical Research Oceans, 109 (C11): C11006.

    Article  Google Scholar 

  • Fang G H, Xu X Q, Wei Z X et al. 2013. Vertical displacement loading tides and self-attraction and loading tides in the Bohai, Yellow, and East China Seas. Science China Earth Sciences, 56 (1): 63–70.

    Article  Google Scholar 

  • Fang G H. 1986. Tide and tidal current charts for the marginal seas adjacent to China. Chinese Journal of Oceanology and Limnology, 4 (1): 1–16.

    Article  Google Scholar 

  • Gao X M, Wei Z X, Lü X Q et al. 2015. Numerical study of tidal dynamics in the South China Sea with adjoint method. Ocean Modelling, 92: 101–114.

    Article  Google Scholar 

  • Green J A M, Nycander J. 2013. A comparison of tidal conversion parameterizations for tidal models. J. Phys. Oceanogr., 43 (1): 104–119.

    Article  Google Scholar 

  • Han G J, Li W, He Z J et al. 2006. Assimilated tidal results of tide gauge and TOPEX/Poseidon data over the China seas using a variational adjoint approach with a nonlinear numerical model. Advances in Atmospheric Sciences, 23 (3): 449–460.

    Article  Google Scholar 

  • Jan S, Chern C S, Wang J. 2002. Transition of tidal waves from the East to South China Seas over the Taiwan Strait: influence of the abrupt step in the topography. Journal of Oceanography, 58 (6): 837–850.

    Article  Google Scholar 

  • Jayne S R, St Laurent L C. 2001. Parameterizing tidal dissipation over rough topography. Geophysical Research Letters, 28 (5): 811–814.

    Article  Google Scholar 

  • Li P L, Zuo J C, Wu D X et al. 2005. Numerical simulation of semidiurnal constituents in the Bohai Sea, the Yellow Sea and the East China Sea with assimilating TOPEX/Poseidon data. Oceanologia et Limnologia Sinica, 36 (1): 24–30. (in Chinese with English abstract)

    Google Scholar 

  • Locarnini R A, Mishonov A V, Antonov J I et al. 2013. World Ocean Atlas 2013, Volume 1: Temperature. NOAA Atlas NESDIS 73, 40p.

    Google Scholar 

  • Lü X Q, Fang G H. 2002. Numerical experiments of the adjoint model for M 2 tide in the Bohai Sea. Acta Oceanologica Sinica, 24 (1): 17–24. (in Chinese with English abstract)

    Google Scholar 

  • Lü X Q, Zhang J C. 2006. Numerical study on spatially varying bottom friction coefficient of a 2D tidal model with adjoint method. Continental Shelf Research, 26(16):1905–1923.

    Article  Google Scholar 

  • Niwa Y, Hibiya T. 2004. Three-dimensional numerical simulation of M 2 internal tides in the East China Sea. Journal of Geophysical Research, 109 (C4): C04027, http://dx.doi.org/10.1029/2003JC001923.

    Article  Google Scholar 

  • Pawlowicz R, Beardsley B, Lentz S. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers and Geosciences, 28 (8): 929–937.

    Article  Google Scholar 

  • Pugh D T. 1987. Tides, Surges and Mean Sea-Level. John Wiley & Sons, Chichester. 471p.

    Google Scholar 

  • Ray R D. 1998. Ocean self-attraction and loading in numerical tidal models. Marine Geodesy, 21 (3): 181–192.

    Article  Google Scholar 

  • St Laurent L C, Simmons H L, Jayne S R. 2002. Estimating tidally driven mixing in the deep ocean. Geophysical Research Letters, 29 (23): 21–1-21-4.

    Article  Google Scholar 

  • Wahr J M. 1981. Body tides on an elliptical, rotating, elastic and oceanless earth. Geophys. J. Int., 64 (3): 677–703.

    Article  Google Scholar 

  • Wang K, Fang G H, Feng S Z. 1999. A 3-D numerical simulation of M 2 tides and tidal currents in the Bohai Sea, the Huanghai Sea and the East China Sea. Acta Oceanologica Sinica, 21 (4): 1–13. (in Chinese with English abstract)

    Google Scholar 

  • Wang Y H, Fang G H, Wei Z X et al. 2012. Cotidal charts and tidal power input atlases of the global ocean from TOPEX/Poseidon and JASON-1 altimetry. Acta Oceanologica Sinica, 31 (4): 11–23.

    Article  Google Scholar 

  • Yanagi T, Morimoto A, Ichikawa K. 1997. Co-tidal and corange charts for the East China Sea and the Yellow Sea derived from satellite altimetric data. Journal of Oceanography, 53: 303–309.

    Google Scholar 

  • Zhao B, Fang G, Cao D. 1993. Numerical modeling on the tides and tidal currents in the Eastern China Sea. Yellow Sea Research, 5: 41–61.

    Google Scholar 

  • Zhu X M, Bao X W, Song D H et al. 2012. Numerical study on the tides and tidal currents in Bohai Sea, Yellow Sea and East China Sea. Oceanologia et Limnologia Sinica, 43(6):1103–1113. (in Chinese with English abstract)

    Google Scholar 

  • Zhu X M, Song D H, Bao X W et al. 2014. Tidal energy flux and dissipation in the Northwest Pacific. Journal of Tropical Oceanography, 33 (1): 1–9. (in Chinese with English abstract)

    Google Scholar 

  • Zu T T, Gan J P, Erofeeva S Y. 2008. Numerical study of the tide and tidal dynamics in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 55 (2): 137–154.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to two anonymous reviewers for constructive comments and suggestions on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohong Fang  (方国洪).

Additional information

Supported by the National Natural Science Foundation of China (Nos. 40676009, 40606006) and the Qingdao Science and Technology Basic Research Program (No. 11-1-4-98-jch)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, F., Fang, G. & Xu, X. Effects of internal tidal dissipation and self-attraction and loading on semidiurnal tides in the Bohai Sea, Yellow Sea and East China Sea: a numerical study. Chin. J. Ocean. Limnol. 35, 987–1001 (2017). https://doi.org/10.1007/s00343-017-6087-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-017-6087-4

Keywords

Navigation