Skip to main content
Log in

Shrimp arginine kinase being a binding protein of WSSV envelope protein VP31

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Viral entry into the host is the earliest stage of infection in the viral life cycle in which attachment proteins play a key role. VP31 (WSV340/WSSV396), an envelope protein of white spot syndrome virus (WSSV), contains an Arg-Gly-Asp (RGD) peptide domain known as a cellular attachment site. At present, the process of VP31 interacting with shrimp host cells has not been explored. Therefore, the VP31 gene was cloned into pET30a (+), expressed in Escherichia coli strain BL21 and purified with immobilized metal ion affinity chromatography. Four gill cellular proteins of shrimp (Fenneropenaeus chinensis) were pulled down by an affinity column coupled with recombinant VP31 (rVP31), and the amino acid sequences were identified with MALDI-TOF/TOF mass spectrometry. Hemocyanin, beta-actin, arginine kinase (AK), and an unknown protein were suggested as the putative VP31 receptor proteins. SDS-PAGE showed that AK is the predominant binding protein of VP31. An i n vitro binding activity experiment indicated that recombinant AK’s (rAK) binding activity with rVP31 is comparable to that with the same amount of WSSV. These results suggested that AK, as a member of the phosphagen kinase family, plays a role in WSSV infection. This is the first evidence showing that AK is a binding protein of VP31. Further studies on this topic will elucidate WSSV infection mechanism in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cerenius L, Jiravanichpaisal P, Liu H P, Soderhall I. 2010. Crustacean immunity. In: Söderhäll K ed. Invertebrate Immunity: Advances in Experimental Medicine and Biology. Springer, US. 708: 239–259.

    Article  Google Scholar 

  • Chai C Y, Yoon J, Lee Y S, Kim Y B, Choi T J. 2013. Analysis of the complete nucleotide sequence of a white spot syndrome virus isolated from Pacific white shrimp. J. Microbiol., 51 (5): 695–699.

    Article  Google Scholar 

  • Chen L L, Leu J H, Huang C J, Chou C M, Chen S M, Wang C H, Lo C F, Kou G H. 2002. Identification of a nucleocapsid protein (VP35) gene of shrimp white spot syndrome virus and characterization of the motif important for targeting VP35 to the nuclei of transfected insect cells. Virology, 293 (1): 44–53.

    Article  Google Scholar 

  • Decker H, Jaenicke E. 2004. Recent findings on phenoloxidase activity and antimicrobial activity of hemocyanins. Dev. Comp. Immunol., 28 (7-8): 673–687.

    Article  Google Scholar 

  • Dumas C, Camonis J. 1993. Cloning and sequence analysis of the cDNA for arginine kinase of lobster muscle. J. Biol. Chem., 268 (29): 21599–21605.

    Google Scholar 

  • France R M, Sellers D S, Grossman S H. 1997. Purification, characterization, and hydrodynamic properties of arginine kinase from Gulf shrimp ( Penaeus aztecus ). Arch. Biochem. Biophys., 345 (1): 73–78.

    Article  Google Scholar 

  • Furukohri T, Okamoto S, Suzuki T. 1994. Evolution of phosphagen kinase (III). Amino acid sequence of arginine kinase from the shrimp Penaeus japonius. Zoolog. Sci., 11 (2): 229–234.

    Google Scholar 

  • Huang J, Song X L, Yu J, Yang C H. 1995. Baculoviral hypodermal and hematopoietic necrosis-study on the pathogen and pathology of the explosive epidemic disease of shrimp. Marine Fisheries Research, 16 (1): 1–10 (in Chinese with English abstract)

    Google Scholar 

  • Kinsey S T, Lee B C. 2003. The effects of rapid salinity change on in vivo arginine kinase flux in the juvenile blue crab, Callinectes sapidus. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 135 (3): 521–531.

    Article  Google Scholar 

  • Kotlyar S, Weihrauch D, Paulsen R S, Towle D W. 2000. Expression of arginine kinase enzymatic activity and mRNA in gills of the euryhaline crabs Carcinus maenas and Callinectes sapidus. J. Exp. Biol., 203 (Pt 16): 2395–2404.

    Google Scholar 

  • Lanier L M, Volkman L E. 1998. Actin binding and nucleation by Autographa california M nucleopolyhedrovirus. Virology, 243 (1): 167–177.

    Article  Google Scholar 

  • Li L, Lin Z Y, Xu L X, Yang F. 2011. The RGD motif in VP31 of white spot syndrome virus is involved in cell adhesion. Arch. Virol., 156 (8): 1317–1321.

    Article  Google Scholar 

  • Li L, Xie X X, Yang F. 2005. Identification and characterization of a prawn white spot syndrome virus gene that encodes an envelope protein VP31. Virology, 340: 125–132.

    Article  Google Scholar 

  • Li Q, Yang F, Zhang J H, Chen Y J. 2003. Proteomic analysis of proteins that binds specifically to the homologous repeat regions of white spot syndrome virus. Biol. Pharm. Bull., 26 (11): 1517–1522.

    Article  Google Scholar 

  • Li W, Tang X Q, Xing J, Sheng X Z, Zhan W B. 2014. Proteomic analysis of differentially expressed proteins in Fenneropenaeus chinensis hemocytes upon white spot syndrome virus infection. PLoS One, 9 (2): e89962.

    Article  Google Scholar 

  • Liang Y, Cheng J J, Yang B, Huang J. 2010. The role of F 1 ATP synthase beta subunit in WSSV infection in the shrimp, Litopenaeus vannamei. Virol. J., 7 (1): 144.

    Article  Google Scholar 

  • Liang Y, Huang J, Song X L, Zhang P J, Xu H S. 2005. Four viral proteins of white spot syndrome virus (WSSV) that attach to shrimp cell membranes. Dis. Aquat. Organ., 66: 81–85.

    Article  Google Scholar 

  • Liang Y, Song X L, Huang J, Zhang P J. 2003). DIG labeled WSSV and observation of binding phenomenon between WSSV and it’s host cell. Oceanologia et Limnologia Sinica, (S): 1–9. (in Chinese with English abstract)

    Google Scholar 

  • Lightner D V. 1996). A Handbook of Shrimp Pathology and Diagnostic Procedures for Diseases of Cultured Penaeid Shrimp. World Aquaculture Society, Tucson, Arizona, U.S.A.

    Google Scholar 

  • Liu B D, Dai R K, Tian C J, Dawson L, Gorelick R, Yu X F. 1999. Interaction of the human immunodeficiency virus type 1 nucleocapsid with actin. J. Virol., 73 (4): 2901–2908.

    Google Scholar 

  • Liu C, Zhao P, Liang Y, Gao Q, Liu S P, Huang J, 2014. Preliminary study on the conjunction between arginine kinase of Fenneropenaeus chinensis and the structure proteins of white spot syndrome virus (WSSV). Marine Sciences, 38 (3): 104–110 (in Chinese with English abstract)

    Google Scholar 

  • Liu Q H, Zhang X L, Ma C Y, Liang Y, Huang J. 2009. VP37 of white spot syndrome virus interact with shrimp cells. Lett. Appl. Microbiol., 48 (1): 44–50.

    Article  Google Scholar 

  • Ma F F, Liu Q H, Guan G K, Li C, Huang J. 2014. Arginine kinase of Litopenaeus vannamei involved in white spot syndrome virus infection. Gene, 539 (1): 99–106.

    Article  Google Scholar 

  • Mandl C W, Guirakhoo F, Holzmann H, Heinz F X, Kunz C. 1989. Antigenic structure of the flavivirus envelope protein E at the molecular level, using tick-borne encephalitis virus as a model. J. Virol., 63 (2): 564–571.

    Google Scholar 

  • OIE. 2012. Manual of Diagnostic Tests for Aquatic Animals. Chapter 2.2.6 White Spot Disease. World Organisation of Aquatic Animal Health.

    Google Scholar 

  • Pierschbacher M D, Ruoslahti E. 1984. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 309 (5963): 30–33.

    Article  Google Scholar 

  • Pineda A, Ellington W R. 1998. Immunogold transmission electron microscopic localization of arginine kinase in Arthropod mitochondria. J. Exp. Zool., 281 (2): 73–79.

    Article  Google Scholar 

  • Sánchez-Paz A. 2010. White spot syndrome virus: an overview on an emergent concern. Vet. Res., 41 (6): 43.

    Article  Google Scholar 

  • Smith A E, Helenius A. 2004. How viruses enter animal cells. Science, 304 (5668): 237–242.

    Article  Google Scholar 

  • Song C W, Cui Z X, Liu Y, Li Q Q, Wang S Y. 2012. Cloning and expression of arginine kinase from a swimming crab, Portunus trituberculatus. Mol. Biol. Rep., 39 (4): 4879–4888.

    Article  Google Scholar 

  • Sritunyalucksana K, Wannapapho W, Lo C F, Flegel T W. 2006. PmRab7 is a VP28-binding protein involved in white spot syndrome virus infection in shrimp. J. Virol., 80 (21): 10734–10742.

    Article  Google Scholar 

  • Strong S J, Ellington W R. 1995. Isolation and sequence analysis of the gene for arginine kinase from the chelicerate arthropod, Limulus polyphemus: insights into catalytically important residues. Biochim. Biophys. Acta, 1246 (2): 197–200.

    Article  Google Scholar 

  • Terwilliger N B. 1998. Functional adaptations of oxygentransport proteins. J. Exp. Biol., 201 (Pt 8): 1085–1098.

    Google Scholar 

  • Tsai J M, Wang H C, Leu J H, Hsiao H H, Wang A H J, Kou G H, Lo C F. 2004. Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. J. Virol., 78 (20): 11360–11370.

    Article  Google Scholar 

  • Valentim-Neto P A, Fraga A P M, Marques M R F. 2014. Differential expression of proteins in the gills of Litopenaeus vannamei infected with white spot syndrome virus. Aquacult. Int., 22 (5): 1605–1620.

    Article  Google Scholar 

  • van Hulten M C W, Witteveldt J, Peters S, Kloosterboer N, Tarchini R, Fiers M, Sandbrink H, Lankhorst R K, Vlak J M. 2001. The white spot syndrome virus DNA genome sequence. Virology, 286 (1): 7–22.

    Article  Google Scholar 

  • Verdaguer N, Mateu M G, Andreu D, Giralt E, Domingo E, Fita I. 1995. Structure of the major antigenic loop of footand-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. EMBO J., 14 (8): 1690–1696.

    Google Scholar 

  • Wang B, Li F H, Luan W, Xie Y S, Zhang C S, Luo Z, Gui L, Yan H, Xiang J X. 2008. Comparison of gene expression profiles of Fenneropenaeus chinensis challenged with WSSV and Vibrio. Mar. Biotechnol., 10 (6): 664–675.

    Article  Google Scholar 

  • Wu J J, Li F, Huang J J, Xu L M, Yang F. 2015. Crayfish hematopoietic tissue cells but not hemocytes are permissive for white spot syndrome virus replication. Fish Shellfish Immunol., 43 (1): 67–74.

    Article  Google Scholar 

  • Xie X X, Yang F. 2005. Interaction of white spot syndrome virus VP26 protein with actin. Virology, 336 (1): 93–99.

    Article  Google Scholar 

  • Xu H, Yan F, Deng X B, Wang J C, Zou T T, Ma X, Zhang X, Qi Y P. 2009. The interaction of white spot syndrome virus envelope protein VP28 with shrimp Hsc70 is specific and ATP-dependent. Fish Shellfish Immunol., 26 (3): 414–421.

    Article  Google Scholar 

  • Yang F, He J, Lin X H, Li Q, Pan D, Zhang X B, Xu X. 2001. Complete genome sequence of the shrimp white spot bacilliform virus. J. Virol., 75 (23): 11811–11120.

    Article  Google Scholar 

  • Yao C L, Ji P F, Kong P, Wang Z Y, Xiang J H. 2009. Arginine kinase from Litopenaeus vannamei: cloning, expression and catalytic properties. Fish Shellfish Immunol., 26 (3): 553–558.

    Article  Google Scholar 

  • Yao C L, Wu C G, Xiang J H, Dong B. 2005. Molecular cloning and response to laminarin stimulation of arginine kinase in haemolymph in Chinese shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol., 19 (4): 317–329.

    Article  Google Scholar 

  • Yu C J, Lin Y F, Chiang B L, Chow L P. 2003. Proteomics and immunological analysis of a novel shrimp allergen, Penm 2. J Immunol., 170 (1): 445–453.

    Article  Google Scholar 

  • Zhang X B, Huang C H, Qin Q W. 2004. Antiviral properties of hemocyanin isolated from shrimp Penaeus monodon. Antiviral Res., 61 (2): 93–99.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Huang  (黄倢).

Additional information

Supported by the National Science Foundation for Post-Doctoral Scientists of China (No. 2013M541965), the International Postdoctoral Academic Exchange Program, the Qingdao Postdoctoral Science Foundation Funded Project, the Construction Program for “Taishan Scholarship” of Shandong Province of China and the Program for Chinese Outstanding Talents in Agricultural Scientific Research

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Gao, Q., Liang, Y. et al. Shrimp arginine kinase being a binding protein of WSSV envelope protein VP31. Chin. J. Ocean. Limnol. 34, 1287–1296 (2016). https://doi.org/10.1007/s00343-016-5198-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-016-5198-7

Keywords

Navigation