Skip to main content
Log in

Coherent and incoherent internal tides in the southern South China Sea

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Coherent and incoherent internal tides (CITs and ICITs) in the southern South China Sea were investigated from two sets of 18-month mooring current records. The CITs were mainly composed of diurnal Q 1, O 1, P 1 and K 1 and semidiurnal M 2. The observed diurnal internal tides (ITs) were more coherent than the semidiurnal constituents. Coherent diurnal variance accounted for approximately 58% of the diurnal motion, whereas semidiurnal tides contained a much smaller fraction (35%) of coherent motion. The ICITs mainly consisted of motion at non-tidal harmonic frequencies around the tidal frequency, and showed clear intermittency. The modal decomposition of CITs and ICITs showed that CITs were dominated by mode- 1, whereas mode-1 and higher modes in ICITs signals showed comparable amplitudes. CITs and ICITs accounted for approximately 64% and 36% of the total kinetic energy of internal tides, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alford M H, Cronin M F, Klymak J M. 2012. Annual cycle and depth penetration of wind-generated near-inertial internal waves at Ocean Station Papa in the Northeast Pacific. J. Phys. Oceanogr., 42(6): 889–909.

    Article  Google Scholar 

  • Alford M H, Zhao Z X. 2007. Global patterns of low-mode internal-wave propagation. Part I: Energy and energy flux. J. Phys. Oceanogr., 37(7): 1829–1848.

    Google Scholar 

  • Alford M H. 2003. Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature. 423(6936): 159–162.

    Article  Google Scholar 

  • Baines P G. 1982. On internal tide generation models. Deep Sea Research Part A. Oceanographic Research Papers. 29(3): 307–338.

    Article  Google Scholar 

  • Chavanne C, Flament P, Luther D, Gurgel K W. 2010. The surface expression of semidiurnal internal tides near a strong source at Hawaii. Part II: Interactions with mesoscale currents. J. Phys. Oceanogr., 40(6): 1180–1200.

    Google Scholar 

  • Dronkers J J. 1964. Tidal Computations in Rivers and Coastal Waters. North Holland, Amsterdam.

    Google Scholar 

  • Duda T F, Lynch J F, Irish J D, Beardsley R C, Ramp S R, Chiu C S, Tang T Y, Yang Y. J. 2004. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE Journal of Oceanic Engineering. 29(4): 1105–1130.

    Article  Google Scholar 

  • Egbert G D, Bennett A F, Foreman M G G. 1994. TOPEX/Poseidon tides estimated using a global inverse model. J. Geophys. Res., 99(24): 24821–24852.

    Article  Google Scholar 

  • Egbert G D, Erofeeva S. 2002. Efficient inverse modeling of barotropic ocean tides, Journal of Atmospheric and Oceanic Technology. 19: 183–204.

    Article  Google Scholar 

  • Eich M L, Merrifield M A, Alford M H. 2004. Structure and variability of semidiurnal internal tides in Mamala Bay, Hawaii. J. Geophys. Res., 109 (C5): C05010.

    Article  Google Scholar 

  • Garrett C, Kunze E. 2007. Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39(1): 57–87.

    Article  Google Scholar 

  • Gill A E. 1982. Atmosphere-Ocean Dynamics. Academic Press, New York, USA.

    Google Scholar 

  • Gonella J. 1972. A rotary-component method for analysing meteorological and oceanographic vector time series. Deep Sea Research and Oceanographic Abstracts. 19(12): 833–846.

    Article  Google Scholar 

  • Jan S, Chern C S, Wang J, Chao S Y. 2007. Generation of diurnal K 1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea. J. Geophys. Res., 112 (C6): C06019.

    Article  Google Scholar 

  • Lee I H, Wang Y H, Yang Y, Wang D P. 2012. Temporal variability of internal tides in the northeast South China Sea. J. Geophys. Res., 117 (C2): C02013.

    Google Scholar 

  • Nash J D, Alford M H, Kunze E. 2005. Estimating internal wave energy fluxes in the ocean. J. Atmos. Oceanic Technol., 22(10): 1551–1570.

    Article  Google Scholar 

  • Nash J D, Kunze E, Lee C M, Sanford T B. 2006. Structure of the baroclinic tide generated at Kaena Ridge, Hawaii. J. Phys. Oceanogr., 36(6): 1123–1135.

    Article  Google Scholar 

  • Niwa Y, Hibiya T. 2004. Three-dimensional numerical simulation of M 2 internal tides in the East China Sea. J. Geophys. Res., 109 (C4): C04027.

    Article  Google Scholar 

  • Park J H, Andres M, Martin P J, Wimbush M, Watts D R. 2006. Second-mode internal tides in the East China Sea deduced from historical hydrocasts and a model. Geophys. Res. Lett., 33 (5): L05602.

    Article  Google Scholar 

  • Park J H, Watts D R. 2006. Internal tides in the southwestern Japan/East Sea. J. Phys. Oceanogr., 36(1): 22–34.

    Article  Google Scholar 

  • Rainville L, Pinkel R. 2006. Baroclinic energy flux at the Hawaiian Ridge: Observations from the R/P FLIP. J. Phys. Oceanogr., 36(6): 1104–1122.

    Article  Google Scholar 

  • Shang X D, Liu Q, Xie X H, Chen G Y, Chen R Y. 2015., Characteristics and seasonal variability of internal tides in the southern South China Sea. Deep Sea Research Part I: Oceanographic Research Papers. 98: 43–52.

    Article  Google Scholar 

  • St Laurent L, Garrett C. 2002. The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32(10): 2882–2899.

    Article  Google Scholar 

  • St Laurent L. 2008. Turbulent dissipation on the margins of the South China Sea. Geophys. Res. Lett., 35 (23): L23615.

    Article  Google Scholar 

  • van Haren H. 2003. On the polarization of oscillatory currents in the Bay of Biscay. J. Geophys. Res., 108 (C9): 3290.

    Article  Google Scholar 

  • van Haren H. 2004. Incoherent internal tidal currents in the deep ocean. Ocean Dynamics. 54(1): 66–76.

    Article  Google Scholar 

  • Wunsch C. 1975. Internal tides in the ocean. Rev. Geophys., 13(1): 167–182.

    Article  Google Scholar 

  • Xie X H, Shang X D, Chen G Y. 2010. Nonlinear interactions among internal tidal waves in the northeastern South China Sea. C hinese Journal of Oceanology and Limnology. 28(5): 996–1001.

    Article  Google Scholar 

  • Xie X H, Shang X D, van Haren H, Chen G Y. 2013. Observations of enhanced nonlinear instability in the surface reflection of internal tides. Geophys. Res. Lett., 40(8): 1580–1586.

    Article  Google Scholar 

  • Xu Z H, Yin B S, Hou Y J, Liu A K. 2014. Seasonal variability and north-south asymmetry of internal tides in the deep basin west of the Luzon Strait. J. Mar. Syst., 134: 101–112.

    Article  Google Scholar 

  • Xu Z H, Yin B S, Hou Y J, Xu Y S. 2013. Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea. J. Geophys. Res., 118(1): 197–211.

    Article  Google Scholar 

  • Zaron E D, Egbert G D. 2014. Time-variable refraction of the internal tide at the Hawaiian Ridge. J. Phys. Oceanogr., 44(2): 538–557.

    Article  Google Scholar 

  • Zhao Z X, Alford M H, MacKinnon J A, Pinkel R. 2010. Longrange propagation of the semidiurnal internal tide from the Hawaiian Ridge. J. Phys. Oceanogr., 40(4): 713–736.

    Article  Google Scholar 

  • Zilberman N V, Merrifield M A, Carter G S, Luther D S, Levine M D, Boyd T J. 2011. Incoherent nature of M 2 internal tides at the Hawaiian Ridge. J. Phys. Oceanogr., 41(11): 2021–2036.

    Article  Google Scholar 

  • Zu T T, Gan J P, Erofeeva S Y. 2008. Numerical study of the tide and tidal dynamics in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers. 55(2): 137–154.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Shang  (尚晓东).

Additional information

Supported by the Special Fund of the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA11010202), the National Basic Research Program of China (973 Program) (No. 2013CB430303), the National Natural Science Foundation of China (NSFC) (Nos. 41376022, 41276021), and the CAS/SAFEA International Partnership Program for Creative Research Teams

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Xie, X., Shang, X. et al. Coherent and incoherent internal tides in the southern South China Sea. Chin. J. Ocean. Limnol. 34, 1374–1382 (2016). https://doi.org/10.1007/s00343-016-5171-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-016-5171-5

Keywords

Navigation