Skip to main content
Log in

Characterization and analysis of ribosomal proteins in two marine calanoid copepods

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Copepods are among the most abundant and successful metazoans in the marine ecosystem. However, genomic resources related to fundamental cellular processes are still limited in this particular group of crustaceans. Ribosomal proteins are the building blocks of ribosomes, the primary site for protein synthesis. In this study, we characterized and analyzed the cDNAs of cytoplasmic ribosomal proteins (cRPs) of two calanoid copepods, Pseudodiaptomus poplesia and Acartia pacifica. We obtained 79 cRP cDNAs from P. poplesia and 67 from A. pacifica by cDNA library construction/sequencing and rapid amplification of cDNA ends. Analysis of the nucleic acid composition showed that the copepod cRP-encoding genes had higher GC content in the protein-coding regions (CDSs) than in the untranslated regions (UTRs), and single nucleotide repeats (>3 repeats) were common, with “A” repeats being the most frequent, especially in the CDSs. The 3′-UTRs of the cRP genes were significantly longer than the 5′-UTRs. Codon usage analysis showed that the third positions of the codons were dominated by C or G. The deduced amino acid sequences of the cRPs contained high proportions of positively charged residues and had high pI values. This is the first report of a complete set of cRP-encoding genes from copepods. Our results shed light on the characteristics of cRPs in copepods, and provide fundamental data for further studies of protein synthesis in copepods. The copepod cRP information revealed in this study indicates that additional comparisons and analysis should be performed on different taxonomic categories such as orders and families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barreto F S, Burton R S. 2013. Evidence for compensatory evolution of ribosomal proteins in response to rapid divergence of mitochondrial rRNA. Mol. Biol. Evol., 30 (2): 310–314.

    Article  Google Scholar 

  • Blanco-Bercial L, Bradford-Grieve J, Bucklin A. 2011. Molecular phylogeny of the Calanoida (Crustacea: Copepoda). Mol. Phylogenet. Evol., 59 (1): 103–113.

    Article  Google Scholar 

  • Botzman M, Margalit H. 2011. Variation in global codon usage bias among prokaryotic organisms is associated with their lifestyles. Genome Biol., 12 (10): R109.

    Article  Google Scholar 

  • Brodersen D E, Clemons Jr W M, Carter A P, Wimberly B T, Ramakrishnan V. 2002. Crystal structure of the 30S ribosomal subunit from Thermus thermophil u s: structure of the proteins and their interactions with 16S RNA. J. Mol. Biol., 316 (3): 725–768.

    Article  Google Scholar 

  • Bulmer M. 1990. The effect of context on synonymous codon usage in genes with low codon usage bias. Nucl. Acids Res., 18 (10): 2 869–2 873.

    Article  Google Scholar 

  • Burton B, Zimmermann M T, Jernigan R L, Wang Y M. 2012. A computational investigation on the connection between dynamics properties of ribosomal proteins and ribosome assembly. PLoS Comput. Biol., 8 (5): e1002530, http:// dx.doi.org/10.1371/journal.pcbi.1002530.

    Article  Google Scholar 

  • Causton H C, Ren B, Koh S S, Harbison C T, Kanin E, Jennings E G, Lee T I, True H L, Lander E S, Young R A. 2001. Remodeling of yeast genome expression in response to environmental changes. Mol. B iol. C ell, 12 (2): 323–337.

    Article  Google Scholar 

  • Cutter A D, Payseur B A, Salcedo T, Estes A M, Good J M, Wood E, Hartl T, Maughan H, Strempel J, Wang B M, Bryan A C, Dellos M. 2003. Molecular correlates of genes exhibiting RNAi phenotypes in Caenorhabditis elegans. Genome R es., 13 (12): 2 651–2 657.

    Article  Google Scholar 

  • Grocock R J, Sharp P M. 2002. Synonymous codon usage in Pseudomonas aeruginosa PA01. Gene, 289 (1-2): 131–139.

    Article  Google Scholar 

  • Gupta S K, Bhattacharyya T K, Ghosh T C. 2004. Synonymous codon usage in Lactococcus lactis: mutational bias versus translational selection. J. Biomol. Struct. Dyn., 21 (4): 527–535.

    Article  Google Scholar 

  • Harris J K, Kelley S T, Spiegelman G B, Pace N R. 2003. The genetic core of the universal ancestor. Genome R es., 13 (3): 407–412.

    Article  Google Scholar 

  • Heitzer M, Eckert A, Fuhrmann M, Griesbeck C. 2007. Influence of codon bias on the expression of foreign genes in microalgae. Adv. Exp. Med. Biol., 616, 46–53.

    Article  Google Scholar 

  • Humes A G. 1994. How many copepods? Hydrobiologia, 292 (1): 1–7.

    Article  Google Scholar 

  • Ikemura T. 1981. Correlation between abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol. Biol., 1 51 (3): 389–409.

    Google Scholar 

  • Ishii K, Washio T, Uechi T, Yoshihama M, Kenmochi N, Tomita M. 2006. Characteristics and clustering of human ribosomal protein genes. BMC Genomics, 7 (1): 37.

    Article  Google Scholar 

  • Kiørboe T. 2011. What makes pelagic copepods so successful? J. P lankton R es., 33 (5): 677–685.

    Google Scholar 

  • Kober K M, Pogson G H. 2013. Genome-wide patterns of codon bias are shaped by natural selection in the purple sea urchin, Strongylocentrotus purpuratus. G3, 3 (7): 1 069–1 083.

    Article  Google Scholar 

  • Kozak M. 1986. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell, 44 (2): 283–292.

    Article  Google Scholar 

  • Kudla G, Murray A W, Tollervey D, Plotkin J B. 2009. Codingsequence determinants of gene expression in Escherichia coli. Science, 324 (5924): 255–258.

    Article  Google Scholar 

  • Lecompte O, Ripp R, Thierry J C, Moras D, Poch O. 2002. Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Nucleic A cids R es., 30 (24): 5 382–5 390.

    Article  Google Scholar 

  • Lindström M S. 2009. Emerging functions of ribosomal proteins in gene-specific transcription and translation. Biochem. Bioph. Res. Co., 379 (2): 167–170.

    Article  Google Scholar 

  • Liu D L, Brockman J M, Dass B, Hutchins L N, Singh P, McCarrey J R, MacDonald C C, Graber J H. 2007. Systematic variation in mRNA 3'-processing signals during mouse spermatogenesis. Nucleic A cids R es., 35 (1): 234–246.

    Article  Google Scholar 

  • Lott B B, Wang Y M, Nakazato T. 2013. A comparative study of ribosomal proteins: linkage between amino acid distribution and ribosomal assembly. BMC Biophys., 6 (1): 13.

    Article  Google Scholar 

  • Marygold S J, Roote J, Reuter G, Lambertsson A, Ashburner M, Millburn G H, Harrison P M, Yu Z, Kenmochi N, Kaufman T C, Leevers S J, Cook K R. 2007. The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome Biol., 8 (10): R216.

    Article  Google Scholar 

  • Miller C B, Wheeler P. 2004. Biological Oceanography. Blackwell Publishing, Oxford, UK. p.111–128.

    Google Scholar 

  • Peden J F. 1999. Analysis of Codon Usage. University of Nottingham, UK.

    Google Scholar 

  • Powers T, Walter P. 1999. Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol. Biol. Cell, 10 (4): 987–1 000.

    Article  Google Scholar 

  • Rhee J S, Raisuddin S, Lee K W, Seo J S, Ki J S, Kim I C, Park H G, Lee J S. 2009. Heat shock protein (Hsp) gene responses of the intertidal copepod Tigriopus japonicus to environmental toxicants. Comp. Biochem. Phys. C., 149 (1): 104–112.

    Google Scholar 

  • Rispe C, Legeai F, Gauthier J P, Tagu D. 2007. Strong heterogeneity in nucleotidic composition and codon bias in the pea aphid (Acyrthosiphon pisum) shown by ESTbased coding genome reconstruction. J. M ol. E vol., 65 (4): 413–424.

    Google Scholar 

  • RoyChoudhury S, Mukherjee D. 2010. A detailed comparative analysis on the overall codon usage pattern in herpesviruses. Virus Res., 148 (1-2): 31–43.

    Article  Google Scholar 

  • Sen G, Sur S, Bose D, Mondal U, Furnholm T, Bothra A, Tisa L, Sen A. 2007. Analysis of codon usage patterns and predicted highly expressed genes for six phytopathogenic Xanthomonas genomes shows a high degree of conservation. In S ilico B oil., 7 (4-5): 547–558.

    Google Scholar 

  • Sharp P M, Li W H. 1986. An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol., 24 (1-2): 28–38.

    Article  Google Scholar 

  • Sharp P M, Li W H. 1987. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res., 15 (3): 1 281–1 295.

    Article  Google Scholar 

  • Sørensen H P, Mortensen K K. 2005. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J. Biotechnol., 115 (2): 113–128.

    Article  Google Scholar 

  • Sur S, Bhattacharya M, Bothra A K, Tisa L S, Sen A. 2008. Bioinformatic analysis of codon usage patterns in a free living diazotroph, Azotobacter vinelandii. Biotechnology, 7 (2): 242–249.

    Article  Google Scholar 

  • Verdoes J C, van Ooyen A J J. 2000. Codon usage i n Xanthophyllomyces dendrorhous (formerly Phaffia rhodozyma). Biotechnol. Lett., 22 (1): 9–13.

    Article  Google Scholar 

  • Warner J R, McIntosh K B. 2009. How common are extraribosomal functions of ribosomal proteins? Mol. Cell, 34 (1): 3–11.

    Google Scholar 

  • Warner J R. 1999. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci., 24 (11): 437–440.

    Article  Google Scholar 

  • Wilson D N, Cate J H D. 2012. The structure and function of the eukaryotic ribosome. Cold Spring Harb. Perspect. Biol., 4 (5): a011536.

    Article  Google Scholar 

  • Wright F. 1990. The ‘effective number of codons’ used in a gene. Gene, 87 (1): 23–29.

    Article  Google Scholar 

  • Wu G, Culley D E, Zhang W W. 2005. Predicted highly expressed genes in the genomes of Streptomyces coelicolor and Streptomyces avermitilis and the implications for their metabolism. Microbiology, 151 (7): 2 175–2 187.

    Article  Google Scholar 

  • Xu C, Dong J, Tong C F, Gong X D, Wen Q, Zhuge Q. 2013. Analysis of synonymous codon usage patterns in seven different citrus species. Evol. Bioinform., 9: 215–228.

    Article  Google Scholar 

  • Yang F F, Xu D H, Zhuang Y Y, Yi X Y, Huang Y S, Chen H J, Lin S J, Campbell D A, Sturm N R, Liu G X, Zhang H. 2015. Spliced leader RNA trans -splicing discovered in copepods. Sci. Rep.-U K, 5: 17 411, http://dx.doi.org/10. 1038/srep17411.

    Article  Google Scholar 

  • Zhang H, Finiguerra M, Dam H G, Huang Y S, Xu D H, Liu G X, Lin S J. 2013. An improved method for achieving highquality RNA for copepod transcriptomic studies. J. Exp. Mar. Bio l. Ecol., 446: 57–66.

    Article  Google Scholar 

  • Zhang H, Hou Y B, Miranda L, Campbell D A, Sturm N R, Gaasterland T, Lin S J. 2007. Spliced leader RNA transsplicing in dinoflagellates. Proc. Natl. Acad. Sci. USA, 104 (11): 4 618–4 623.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangxing Liu  (刘光兴) or Huan Zhang  (张寰).

Additional information

Supported by the National Natural Science Foundation of China (Nos. 31372509, 41328009) and the National Science Foundation for Young Scientists of China (No. 41106095)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Xu, D., Zhuang, Y. et al. Characterization and analysis of ribosomal proteins in two marine calanoid copepods. Chin. J. Ocean. Limnol. 34, 1258–1268 (2016). https://doi.org/10.1007/s00343-016-5129-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-016-5129-7

Keywords

Navigation