Skip to main content
Log in

Absolute geostrophic currents in global tropical oceans

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Böning C W, Döscher R, Isemer H J. 1991. Monthly mean wind stress and Sverdrup transports in the North Atlantic: a comparison of the Hellerman-Rosenstein and Isemer-Hasse climatologies. J. Phys. Oceanogr., 21 (2): 221–235.

    Article  Google Scholar 

  • Bretherton C S, Widmann M, Dymnikov V P et al. 1999. The effective number of spatial degrees of freedom of a timevarying field. J. Clim., 12 (7): 1990–2009.

    Article  Google Scholar 

  • Chang Y L, Miyazawa Y, Guo X Y. 2015. Effects of the STCC eddies on the Kuroshio based on the 20-year JCOPE2 reanalysis results. Prog. Oceanogr., 135: 64–76.

    Article  Google Scholar 

  • Chu P C. 1995. P-vector method for determining absolute velocity from hydrographic data. Mar. Technol. Soc. J., 29 (3): 3–14.

    Google Scholar 

  • Chu P C. 2006. P-vector Inverse Method. Springer, Berlin Heidelberg. 605p.

    Book  Google Scholar 

  • Garratt J R. 1977. Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105 (7): 915–929.

    Article  Google Scholar 

  • Gray A R, Riser S C. 2014. A global analysis of sverdrup balance using absolute geostrophic velocities from argo. J. Phys. Oceanogr., 44 (4): 1213–1229.

    Article  Google Scholar 

  • Hautala S L, Roemmich D H, Schmilz Jr W J. 1994. Is the north pacific in sverdrup balance along 24°N? J. Geophys. Res., 99 (C8): 16041–16052.

    Article  Google Scholar 

  • Jia F, Wu L X, Qiu B. 2011. Seasonal modulation of eddy kinetic energy and its formation mechanism in the southeast Indian Ocean. J. Phys. Oceanogr., 41 (4): 657–665.

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77 (3): 437–471.

    Article  Google Scholar 

  • Killworth P D. 1986. A Bernoulli inverse method for determining the ocean circulation. J. Phys. Oceanogr., 16 (12): 2031–2051.

    Article  Google Scholar 

  • Lagerloef G S E, Mitchum G T, Lukas R B, Niiler P P. 1999. Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. J. Geophy. Res., 104 (C10): 23313–23326.

    Article  Google Scholar 

  • Large W G, Pond S. 1981. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11 (3): 324–336.

    Article  Google Scholar 

  • Leetmaa A, Niiler P, Stommel H. 1977. Does the Sverdrup relation account for the mid-Atlantic circulation? J. Mar. Res., 35: 1–10.

    Google Scholar 

  • Leith C E. 1973. The standard error of time-average estimates of climatic means. J. Appl. Meteor., 12 (6): 1066–1069.

    Article  Google Scholar 

  • Marchuk G I, Sarkisian A J, Kochergin V P. 1973. Calculations of flows in a baroclinic ocean: numerical methods and results. Geophys., Fluid Dyn., 5 (1): 89–99.

    Article  Google Scholar 

  • Meyers G. 1980. Do Sverdrup transports account for the Pacific North Equatorial Countercurrent? J. Geophys. Res., 85 (C2): 1073–1075.

    Article  Google Scholar 

  • Polonsky A. 2015. Comments on “a global analysis of sverdrup balance using absolute geostrophic velocities from argo”. J. Phys. Oceanogr., 45 (5): 1446–1448.

    Article  Google Scholar 

  • Qiu B. 1999. Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr., 29 (10): 2471–2486.

    Article  Google Scholar 

  • Rio M H, Hernandez F. 2004. A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J. Geophys. Res., 109 (C12): C12302, http://dx.doi.org/10.1029/2003JC002226.

    Article  Google Scholar 

  • Roemmich D, Gilson J. 2009. The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program. Prog. Oceanogr., 82 (2): 81–100.

    Article  Google Scholar 

  • Schmitz W J, Thompson J D, Luyten J R. 1992. The Sverdrup circulation for the Atlantic along 24°N. J. Geophys. Res., 97 (C5): 7251–7256.

    Article  Google Scholar 

  • Stommel H, Schott F. 1977. The beta spiral and the determination of the absolute velocity field from hydrographic station data. Deep Sea Res., 24 (3): 325–329.

    Article  Google Scholar 

  • Sverdrup H U. 1947. Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33 (11): 318–326.

    Article  Google Scholar 

  • Wunsch C, Roemmich D. 1985. Is the north atlantic in sverdrup balance? J. Phys.Oceanogr., 15 (12): 1876–1880.

    Article  Google Scholar 

  • Wunsch C. 1978. The North Atlantic general circulation west of 50°W determined by inverse methods. Rev. Geophys., 16 (4): 583–620.

    Article  Google Scholar 

  • Wunsch C. 2011. The decadal mean ocean circulation and Sverdrup balance. J. Mar. Res., 69 (2-3): 417–434.

    Article  Google Scholar 

  • Yuan D L, Zhang Z C, Chu P C, Dewar W K. 2014. Geostrophic circulation in the tropical north pacific ocean based on argo profiles. J. Phys. Oceanogr., 44 (2): 558–575.

    Article  Google Scholar 

  • Zhang Z C, Yuan D L, Chu P C. 2013. Geostrophic meridional transport in tropical northwest Pacific based on Argo profiles. Chin. J. Oceanol. Limnol., 31 (3): 656–664.

    Article  Google Scholar 

  • Zhang Z G, Wang W, Qiu B. 2014. Oceanic mass transport by mesoscale eddies. Science, 345 (6194): 322–324.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongliang Yuan  (袁东亮).

Additional information

Supported by the National Basic Research Program of China (973 Program) (No. 2012CB956001), the CMA (No. GYHY201306018), the Chinese Academy of Sciences (CAS) (No. XDA11010301), the National Natural Science Foundation of China (Nos. 41176019, 41421005, U1406401), and the State Oceanic Administration (SOA) (No. GASI-03-01-01-05)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Yuan, D. Absolute geostrophic currents in global tropical oceans. Chin. J. Ocean. Limnol. 34, 1383–1393 (2016). https://doi.org/10.1007/s00343-016-5092-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-016-5092-3

Keywords

Navigation