Skip to main content
Log in

The metabolite profiling of coastal coccolithophorid species Pleurochrysis carterae (Haptophyta)

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Pleurochrysis carterae is a calcified coccolithophorid species that usually blooms in the coastal area and causes aquaculture losses. The cellular calcification, blooming and many other critical species specific eco-physiological processes are closely related to various metabolic pathways. The purpose of this study is to apply the unbiased and non-destructive method of nuclear magnetic resonance (NMR) to detect the unknown holistic metabolite of P. carterae. The results show that NMR spectroscopic method is practical in the analysis of metabolites of phytoplankton. The metabolome of P. carterae was dominated by 26 metabolites involved in a number of different primary and secondary metabolic pathways. Organic acids and their derivatives, amino acids, sugars, nucleic aides were mainly detected. The abundant metabolites are that closely related to the process of cellular osmotic adjustment, which possibly reflect the active ability of P. carterae to adapt to the versatile coastal niche. DMSP (dimethylsulphoniopropionate) was the most dominant metabolite in P. carterae, up to 2.065±0.278 mg/g lyophilized cells, followed by glutamate and lactose, the contents were 0.349±0.035 and 0.301±0.073 mg/g lyophilized cells respectively. Other metabolites that had the content ranged between 0.1–0.2 mg/g lyophilized cells were alanine, isethionate and arabinose. Amino acid (valine, phenylalanine, isoleucine, tyrosine), organic acid salts (lactate, succinate), scyllitol and uracil had content ranged from 0.01 to below 0.1 mg/g lyophilized cells. Trigonelline, fumarate and formate were detected in very low content (only thousandths of 1 mg per gram of lyophilized cells or below). Our results of the holistic metabolites of P. carterae are the basic references for the further studies when multiple problems will be addressed to this notorious blooming calcifying species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aue W P, Bartholdi E, Ernst R R. 1976a. Two-dimensional spectroscopy. Application to nuclear magnetic-resonance. J. Chem. Phys., 64 (5): 2229–2246.

    Article  Google Scholar 

  • Aue W P, Karhan J, Ernst R R. 1976b. Homonuclear broad band decoupling and two-dimensional J-resolved NMR spectroscopy. J. Chem. Phys., 64 (10): 4226–4227.

    Article  Google Scholar 

  • Blunden G, Guiry M D, Druehl L D, Kogame K, Kawai H. 2012. Trigonelline and other betaines in species of laminariales. Nat. Prod. Commun., 7 (7): 863–865.

    Google Scholar 

  • Braunschweiler L, Ernst R R. 1983. Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J. Magn. Reson., 53 (3): 521–528.

    Google Scholar 

  • Fan T W M, Lane A N. 2008. Structure-based profiling of metabolites and isotopomers by NMR. Prog. Nucl. Magn. Reson. Spectrosc., 52 (2-3): 69–117.

    Article  Google Scholar 

  • Fan T W M. 1996. Metabolite profiling by one-and twodimensional NMR analysis of complex mixtures. Prog. Nucl. Magn. Reson. Spectrosc., 28 (2): 161–219.

    Article  Google Scholar 

  • Fernández E, Balch W M, Marãnón E, Holligan P M. 1994. High rates of lipid biosynthesis in cultured, mesocosm and coastal populations of the cocco-lithophore Emiliania huxleyi. Mar. Ecol. Prog. Ser., 114: 13–22.

    Article  Google Scholar 

  • Fichtinger-Schepman A M J, Kamerling J P, Vliegenthart J F G, De Jong E W, Bosch L, Westbroek P. 1979. Composition of a methylated, acidic polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Kamptner. Carbohydrate Research, 69 (1): 181–189.

    Article  Google Scholar 

  • Gebser B, Pohnert G. 2013. Synchronized regulation of different zwitterionic metabolites in the osmoadaption of phytoplankton. Mar. Drugs, 11 (6): 2168–2182.

    Article  Google Scholar 

  • Hanson A D, Rivoal J, Paquet L, Cage D A. 1994. Biosynthesis of 3-dimethylsulfoniopropionate in Wollastonia biflora (L.) DC. Evidence that S-methylmethionine is an intermediate. Plant Physiol., 105 (1): 103–110.

    Article  Google Scholar 

  • Holligan P M, Fernández E, Aiken J, Balch W M, Burkill P H, Finch M, Groom S B, Malin G, Muller K, Purdie D A, Robinson C, Trees C C, Turner S M, Van der Wal P. 1993. A biogeochemical study of the coccolithophore Emiliania huxleyi, in the north Atlantic. Global Biogeochem. Cy., 7 (4): 879–900.

    Article  Google Scholar 

  • Houdan A, Bonnard A, Fresnel J, Fouchard S, Billard C, Probert I. 2004. Toxicity of coastal coccolithophores (Prymnesiophyceae, Haptophyta). J. Plankton Res., 26 (8): 875–883.

    Article  Google Scholar 

  • Jamers A, Blust R, De Coen W, Griffin J L, Jones O A H. 2013. An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii. Aquat. Toxicol., 126: 355–364.

    Article  Google Scholar 

  • Jiang Y, Zhou C X, Luo Q J, Ma B. 2009. Lethal effects of different Pleurochrysis carterae cells on brine shrimp. Asian Journal of Ecotoxicology, 4 (4): 561–568. (in Chinese with English abstract)

    Google Scholar 

  • Keller M D, Kiene R P, Matrai P A, Bellows W K. 1999. Production of glycine betaine and dimethylsulfoniopropionate in marine phytoplankton. I. Batch cultures. Mar. Biol., 135 (2): 237–248.

    Article  Google Scholar 

  • Keller M D. 1989. Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size. Biol. Oceanogr., 6 (5-6): 375–382.

    Google Scholar 

  • Kiene R P. 1996. Production of methanethiol from dimethylsulfoniopropionate in marine surface waters. Mar. Chem., 54 (1-2): 69–83.

    Article  Google Scholar 

  • Kirst G O. 1996. Osmotic adjustment in phytoplankton and MacroAlgae. The use of Dimethylsulfoniopropionate (DMSP). In: Kiene R P, Visscher P T, Keller M D, Kirst G O eds. Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Plenum Press, New York, USA. p.121–129.

    Chapter  Google Scholar 

  • Kobayashi Y, Torii A, Kato M, Adachi K. 2007. Accumulation of cyclitols functioning as compatible solutes in the Haptophyte alga Pavlova sp. Phycological Research, 55 (2): 81–90.

    Article  Google Scholar 

  • Malin G, Erst G O. 1997. Algal production of dimethyl sulfide and its atmospheric role. J. Phycol., 33 (6): 889–896.

    Article  Google Scholar 

  • Marsh M E, Chang D K, King G C. 1992. Isolation and characterization of a novel acidic polysaccharide containing tartrate and glyoxylate residues from the mineralized scales of a unicellular coccolithophorid alga Pleurochrysis carterae. The Journal of Biological Chemistry, 267 (28): 20507–20512.

    Google Scholar 

  • Marsh M E, Dickinson D P. 1997. Polyanion-mediated mineralization-mineralization in coccolithophore (Pleurochrysis carterae) variants which do not express PS2, the most abundant and acidic mineral-associated polyanion in wild-type cells. Protoplasma, 199 (1-2): 9–17.

    Article  Google Scholar 

  • Marsh M E. 1994. Polyanion-mediated mineralizationassembly and reorganization of acidic polysaccharides in the Golgisystem of a coccolithophorid alga during mineral deposition. Protoplasma, 177 (3-4): 108–122.

    Article  Google Scholar 

  • Marsh M E. 1996. Polyanion-mediated mineralization-a kinetic analysis of the calcium-carrier hypothesis in the phytoflagellate Pleurochrysis carterae. Protoplasma, 190 (3): 181–188.

    Article  Google Scholar 

  • Mausz M A, Pohnert G. 2015. Phenotypic diversity of diploid and haploid Emiliania huxleyi cells and of cells in different growth phases revealed by comparative metabolomics. J. Plant Physiol., 172: 137–148.

    Article  Google Scholar 

  • Maxwell J R, Mackenzie A S, Volkman J K. 1980. Configuration at C-24 in steranes and sterols. Nature, 286 (5774): 694–697.

    Article  Google Scholar 

  • Nevitt G A, Bonadonna F. 2005. Sensitivity to dimethyl sulphide suggests a mechanism for olfactory navigation by seabirds. Biology Letters, 1 (3): 303–305.

    Article  Google Scholar 

  • Obata T, Schoenefeld S, Krahnert I, Bergmann S, Scheffel A, Fernie A R. 2013. Gas-Chromatography Mass-Spectrometry (GC-MS) based metabolite profiling reveals mannitol as a major storage carbohydrate in the coccolithophorid alga Emiliania huxleyi. Metabolites, 3 (1): 168–184.

    Article  Google Scholar 

  • Rokitta S D, John U, Rost B. 2012. Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi. PLoS One, 7 (12): e52212, http://dx.doi.org/10.1371/journal.pone.0052212.

    Article  Google Scholar 

  • Rokitta S D, von Dassow P, Rost B, John U. 2014. Emiliania huxleyi endures N-limitation with an efficient metabolic budgeting and effective ATP synthesis. BMC Genomics, 15: 1051, http://www.biomedcentral.com/1471-2164/15/1051.

    Article  Google Scholar 

  • Salmon D L. 2013. Metabolite Profiling of the Coccolithophore Emiliania huxleyi to Examine Links between Calcification and Central Metabolism. University of Exeter, Exeter, UK, https://ore.exeter.ac.uk/repository/handle/10871/14932.

    Google Scholar 

  • Seymour J R, Simó R, Ahmed T, Stocker R. 2010. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science, 329 (5989): 342–345.

    Article  Google Scholar 

  • Stefels J. 2000. Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. Journal of Sea Research, 43 (3-4): 183–197.

    Article  Google Scholar 

  • Strom S L, Bright K J. 2009. Inter-strain differences in nitrogen use by the coccolithophore Emiliania huxleyi, and consequences for predation by a planktonic ciliate. Harmful Algae, 8 (5): 811–816.

    Article  Google Scholar 

  • Sukhanova I N, Flint M V. 1998. Anomalous blooming of coccolithophorids over the eastern Bering Sea shelf. Oceanology, 38 (4): 502–505.

    Google Scholar 

  • Sunda W, Kieber D J, Kiene R P, Huntsman S. 2002. An antioxidant function for DMSP and DMS in marine algae. Nature, 418 (6895): 317–320.

    Article  Google Scholar 

  • Thierstein H R, Young J R. 2004. Coccolithophores: From Molecular Processes to Global Impact. Springer-Verlag, Berlin Heidelberg, Germany.

    Book  Google Scholar 

  • Viso A C, Marty J C. 1993. Fatty acids from 28 marine microalgae. Phytochemistry, 34 (6): 1521–1533.

    Article  Google Scholar 

  • Wiesemeier T, Pohnert G. 2007. Direct quantification of dimethylsulfoniopropionate (DMSP) in marine microand macroalgae using HPLC or UPLC/MS. Journal of Chromatogr aphy B, 850 (1-2): 493–498.

    Article  Google Scholar 

  • Winter A, Henderiks J, Beaufort L, Rickaby R E M, Brown C W. 2013. Poleward expansion of the coccolithophore Emiliania huxleyi. J. Plankton Res., 36 (2): 316–325, http://dx.doi.org/10.1093/plankt/fbt110.

    Article  Google Scholar 

  • Wolfe G V, Steinke M, Kirst G O. 1997. Grazing-activated chemical defence in a unicellular marine alga. Nature, 387 (6636): 894–897.

    Article  Google Scholar 

  • Wolfe G V, Steinke M. 1996. Grazing-activated production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi. Limnology and Oceanography, 41 (6): 1151–1160.

    Article  Google Scholar 

  • Yancey P H. 2005. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. The Journal of Experimental Biology, 208 (15): 2819–2830.

    Article  Google Scholar 

  • Zhang W L, Tan N G J, Li S F Y. 2014. NMR-based metabolomics and LC-MS/MS quantification reveal metal-specific tolerance and redox homeostasis in Chlorella vulgaris. Mol. BioSyst., 10 (1): 149–160.

    Article  Google Scholar 

  • Zhou C X, Xu J L, Yan X J, Hou Y D, Jiang Y. 2009. Analysis of dimethylsulfide and dimethylsulfoniopropionate in marine microalgae culture. Chin. J. Anal. Chem., 37 (9): 1308–1312.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengxu Zhou  (周成旭) or Yangfang Ye  (叶央芳).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Luo, J., Ye, Y. et al. The metabolite profiling of coastal coccolithophorid species Pleurochrysis carterae (Haptophyta). Chin. J. Ocean. Limnol. 34, 749–756 (2016). https://doi.org/10.1007/s00343-016-5042-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-016-5042-0

Keywords

Navigation