Skip to main content

Advertisement

Log in

Temporal variation in biodeposit organic content and sinking velocity in long-line shellfish culture

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

We measured the organic content and sinking velocities of biodeposits from two scallop species (Chlamys farreri, Patinopecten yessoensis) and abalone (Haliotis discus hannai) that were cultured on suspended long-lines. Measurements were conducted every two months from April 2010 to February 2011. The shellfish were divided into three size groups (small, middle, and big sizes). At each sample point, we assessed biodeposit organic content, average sinking velocity, the frequency distribution of sinking velocities, and the correlation between organic content and sinking velocity. The organic content of biodeposits varied significantly among months (P<0.05) and the pattern of change varied among species. Sinking velocities varied significantly, ranging from <0.5 cm/s to >1.9 cm/s. The sinking velocities of biodeposits from C. farreri and P. yessoensis were 0.5–1.5 cm/s and from H. discus hannai were <0.7 cm/s. The organic content was significantly negatively correlated to the sinking velocity of biodeposits in C. farreri (P<0.001) and P. yessoensis (P<0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bayne B L. 1993. Feeding physiology of bivalves: timedependence and compensation for changes in food availability. In: Dame R F ed. Bivalve Filter Feeders in Estuarine and Coastal Ecosystem Processes. Springer-Verlag, Berlin Heidelberg. p.1–24.

    Chapter  Google Scholar 

  • Bernard F R. 1974. Annual biodeposition and gross energy budget of mature Pacific Oysters, Crassostrea gigas. J. Fish. Res. Board Can., 31(2): 185–190.

    Google Scholar 

  • Bruland K W, Silver M W. 1981. Sinking rates of fecal pellets from gelatinous zooplankton (Salps, Pteropods, Doliolids). Mar. Biol., 63(3): 295–300.

    Article  Google Scholar 

  • Callier M D, Weise A M, McKindsey C W, Desrosiers G. 2006. Sedimentation rates in a suspended mussel farm (Great-Entry Lagoon, Canada): biodeposit production and dispersion. Mar. Ecol. Prog. Ser., 322: 129–141.

    Article  Google Scholar 

  • Chen Y S, Beveridge M C M, Telfer T C. 1999a. Physical characteristics of commercial pelleted Atlantic salmon feeds and consideration of implications for modeling of waste dispersion through sedimentation. Aquacult. Int., 7(2): 89–100.

    Article  Google Scholar 

  • Chen Y S, Beveridge M C M, Telfer T C. 1999b. Settling rate characteristics and nutrient content of the faeces of Atlantic salmon, Salmo salar L., and the implications for modelling of solid waste dispersion. Aquac. Res., 30(5): 395–398.

    Article  Google Scholar 

  • Danielsson Â, Jönsson A, Rahm L. 2007. Resuspension patterns in the Baltic proper. J. Sea Res., 57(4): 257–269.

    Article  Google Scholar 

  • Fegley S R, MacDonald B A, Jacobsen T R. 1992. Short-term variation in the quantity and quality of seston available to benthic suspension feeders. Estuar. Coast. Shelf Sci., 34(4): 393–412.

    Article  Google Scholar 

  • Feinberg L R, Dam H G. 1998. Effects of diet on dimensions, density and sinking rates of fecal pellets of the copepod Acartia tonsa. Mar. Ecol. Prog. Ser., 175: 87–96.

    Article  Google Scholar 

  • Giles H, Pilditch C A. 2004. Effects of diet on sinking rates and erosion thresholds of mussel Perna canaliculus biodeposits. Mar. Ecol. Prog. Ser., 282(1): 205–219.

    Article  Google Scholar 

  • Hargrave B T. 2005. Environmental Effects of Marine Finfish Aquaculture. The Handbook of Environmental Chemistry, Vol 5. Water pollution, Part M. Springer-Verlag, Berlin Heidelberg.

    Google Scholar 

  • Hatcher A, Grant J, Schofield B. 1994. Effects of suspended mussel culture (Mytilus spp.) on sedimentation, benthic respiration and sediment nutrient dynamics in a coastal bay. Mar. Ecol. Prog. Ser., 115(3): 219–235.

    Article  Google Scholar 

  • Haven D S, Morales-Alamo R. 1968. Occurrence and transport of faecal pellets in suspension in a tidal estuary. Sediment. Geol., 2(2): 141–151.

    Article  Google Scholar 

  • Jiang Z J, Fang J G, Mao Y Z, Wang W. 2012. Identification of aquaculture-derived organic matter in the sediment associated with coastal fish farming. J. Fish. Sci. China, 19(2): 348–354. (in Chinese with English abstract)

    Google Scholar 

  • Mao Y Z, Yang H S, Zhou Y, Ye N H, Fang J G. 2009. Potential of the seaweed Gracilaria lemaneiformis for integrated multi-trophic aquaculture with scallop Chlamys farreri in North China. J. Appl. Phycol., 21(6): 649–656.

    Article  Google Scholar 

  • McCall P L. 1979. The effects of deposit feeding oligochaetes on particle size and settling velocity of Lake Erie sediments. J. Sediment. Petrol., 49(3): 813–818.

    Google Scholar 

  • Miller D C, Norkko A, Pilditch C A. 2002. Influence of diet on dispersal of horse mussel Atrina zelandica biodeposits. Mar. Ecol. Prog. Ser., 242: 153–167.

    Article  Google Scholar 

  • Mirto S, La Rosa T, Danovaro R, Mazzola A. 2000. Microbial and meiofaunal response to intensive mussel-farm biodeposition in coastal sediments of the western Mediterranean. Mar. PoUut. Bull., 40(3): 244–252.

    Article  Google Scholar 

  • PaCFA. 2009. Global Partnership for Climate, Fisheries and Aquaculture. Fisheries and Aquaculture in Our Changing Climate. Policy Brief available at ftp://ftp.fao.org/FI/brochure/climate_change/policy_brief.pdf. Accessed on 2014-09-05.

    Google Scholar 

  • Paffenhöfer G A, Knowles S C. 1979. Ecological implications of fecal pellet size, production and consumption by copepods. J. Mar. Sci., 37(1): 35–49.

    Google Scholar 

  • Phillips B, Kremer P, Madin L P. 2009. Defecation by Salpa thompsoni and its contribution to vertical flux in the Southern Ocean. Mar. Biol., 156(3): 455–467.

    Article  Google Scholar 

  • Ploug H, Iversen M H, Koski M et al. 2008. Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: direct measurement of ballasting by opal and calcite. Limnol. Oceanog., 53(2): 469–476.

    Article  Google Scholar 

  • Qi Z H, Liu H M, Li B et al. 2010. Suitability of two seaweeds Gracilaria lemaneiformis and Sargassum pallidum as feed for the abalone Haliotis discus hannai Ino. Aquaculture, 300(1-4): 189–193.

    Article  Google Scholar 

  • Robison B H, Bailey T G. 1981. Sinking rates and dissolution of midwater fish fecal matter. Mar. Biol., 65(2): 135–142.

    Article  Google Scholar 

  • Sara G, Scilipoti D, Mazzola A et al. 2004. Effects of fish farming waste to sedimentary and particulate organic matter in a southern Mediterranean area (Gulf of Castellammare, Sicily): a multiple stable isotope study (δ13C and δ15N). Aquaculture, 234(1-4): 199–213.

    Article  Google Scholar 

  • Silvert W, Cromey C J. 2001. Modelling impacts. In: Black K D ed. Environmental Impacts of Aquaculture. Sheffield Academic Press, Sheffield. p.154–181.

    Google Scholar 

  • Uye S I, Kaname K. 1994. Relations between fecal pellet volume and body size for major zooplankters of the Inland Sea of Japan. J. Oceanogr., 50(1): 43–49.

    Article  Google Scholar 

  • Wang J, Jiang Z H, Chen R S. 2003. Biodeposition by scallop Chlamys farreri. J. Fish. Sci. China, 11(3): 225–230. (in Chinese with English abstract)

    Google Scholar 

  • Wang J, Jiang Z H, Chen R S. 2005. Study on biodeposition by oyster Crassostrea gigas. J. Fish. Sci. China, 29(3): 344349. (in Chinese with English abstract)

    Google Scholar 

  • Zhang J H, Fang J G, Wang W et al. 2011. Study on the potential of suspended long-line mariculture of the scallop Chlamys farreri in offshore areas. Aquac. Res., 42(11): 1664–1675.

    Article  Google Scholar 

  • Zhang J H, Fang J G, Wang W et al. 2012. Growth and loss of mariculture kelp Saccharina japonica in Sungo Bay, China. J. Appl. Phycol., 24(5): 1209–1216.

    Article  Google Scholar 

  • Zhang J H, Hansen P K, Fang J G et al. 2009. Assessment of the local environmental impact of intensive marine shellfish and seaweed farming~Application of the MOM system in the Sungo Bay, China. Aquaculture, 287(3-4): 304–310.

    Article  Google Scholar 

  • Zhang J H, Ren L H, Wu W G et al. 2014. Production and sinking rates for bio-deposits of abalone (Haliotis discus hannai Ino). Aquac. Res., 45(12): 2041–2047.

    Article  Google Scholar 

  • Zhou Y, Yang H S, Mao Y Z et al. 2003. Biodeposition by the Zhikong scallop Chlamys farreri in Sanggou Bay, Shandong, Northern China. Chinese J. Zool., 38(4): 4044. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihong Zhang  (张继红).

Additional information

Supported by the National Key Technology Research and Development Program of China (No. 2011BAD13B06), the National Natural Science Foundation of China (No. 41276172), and the Special Scientific Research Funds For Central Non-Profit Institute, CAFS (No. 2014A01YY01)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, L., Zhang, J. Temporal variation in biodeposit organic content and sinking velocity in long-line shellfish culture. Chin. J. Ocean. Limnol. 34, 985–991 (2016). https://doi.org/10.1007/s00343-016-4242-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-016-4242-y

Keywords