Chinese Journal of Oceanology and Limnology

, Volume 34, Issue 1, pp 109–117 | Cite as

Effects of a low-radiotoxicity uranium salt (uranyl acetate) on biochemical and hematological parameters of the catfish, Clarias gariepinus

  • Khalid A. Al-Ghanim
  • Zubair Ahmad
  • Hmoud F. Al-Kahem Al-Balawi
  • Fahad Al-Misned
  • Shahid Maboob
  • El-Amin M. Suliman
Biology

Abstract

Specimens of Clarias gariepinus were treated with lethal (70, 75, 80, 85, 90, and 95 mg/L) and sub-lethal concentrations (8, 12 and 16 mg/L) of uranyl acetate, a low-radiotoxicity uranium salt. The LC 50 value was registered as 81.45 mg/L. The protein and glycogen concentrations in liver and muscles were decreased in the fish exposed to sub-lethal concentrations. The red blood cell (RBC) and white blood cell (WBC) counts, haemoglobin (Hb) concentration and haematocrit (Hct) values were decreased. Different blood indices like mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) were negatively affected. Level of plasma glucose was elevated whereas protein was decreased. The level of calcium concentration (Ca) was declined in the blood of exposed fish whereas magnesium (Mg) remains unchanged. The activity level of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) was elevated in exposed fish. These effects were more pronounced in the last period of exposure and in higher concentrations. Results of the present study indicate that uranyl acetate has adverse effects on Clarias gariepinus and causes changes in the biochemical and hematological parameters of the fish.

Keywords

Clarias gariepinus uranyl acetate sub-lethal concentration biochemical and haematological parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CCME] Canadian Council of Ministers of the Environment. 2011. Scientific Criteria Document for the Development of the Canadian Water Quality Guidelines for the Protection of Aquatic Life (Uranium). PN 1451. ISBN 978-1-896997-97-1 PDF. Pp-xiv+106.Google Scholar
  2. [FPTCDW] Federal-Provincial-Territorial Committee on Drinking Water. 2001. Guidelines for Canadian Drinking Water Quality: Supporting Document for Uranium. Health Canada, Ottawa (ON).Google Scholar
  3. [WWSA] World Wide Science Alliance. 2011. Uranyl Acetate: Topics by World Wide Science. Org. http:// worldwidescience.org/topicpages/u/uranyl+acetate.html.Google Scholar
  4. Abou-Donia M B, Dechkovskaia A M, Goldstein L B et al. 2002. Uranyl acetate-induced sensorimotor deficit and increased nitric oxide generation in the central nervous system in rats. Pharmacol. Biochem. Behav., 72 (4): 881–890.CrossRefGoogle Scholar
  5. Adeyemo O K. 2007. Haematological profile of Clarias gariepinus (Burchell, 1822) exposed to lead. Turk. J. Fish Aquat. Sci., 7 (2): 163–169.Google Scholar
  6. Agrahari S, Pandey K C, Gopal K. 2007. Biochemical alteration induced by monocrotophos in the blood plasma of fish, Channa punctatus (Bloch). Pest. Biochem. Physiol., 88 (3): 268–272.CrossRefGoogle Scholar
  7. Ahmad Z. 2012. Toxicity bioassay and effects of sub-lethal exposure of malathion on biochemical composition and haematological parameters of Clarias gariepinus. Afr. J. Biotech., 11 (34): 8 578–8 585.Google Scholar
  8. Ahmad Z. 2014. Biochemical and haematological changes induced by low-radiotoxicity uranium salt (Uranyl acetate) in Heteropneustes fossilis. J. Pure Appl. Micr., 8: 593–603.Google Scholar
  9. Al-Akel A S, Alkahem-Al-Balawi H F, Al-Misned F et al. 2010. Effects of dietary copper exposure on accumulation, growth, and hematological parameters in Cyprinus carpio. Toxicol. Environ. Chem., 92 (10): 1 865–1 878.CrossRefGoogle Scholar
  10. Al-Kahem H F. 1995. Behavioural responses and changes in some haematological parameters of the cichlid fish, Oreochromis niloticus, exposed to trivalent chromium. J. King Abdul. Aziz Univ. Sci., 7 (1): 5–13.CrossRefGoogle Scholar
  11. Alkahemal-Balawi H F, Ahmad Z, Al-Akel A S et al. 2011. Toxicity bioassay of lead acetate and effects of its sublethal exposure on growth, haematological parameters and reproduction in Clarias gariepinus. Afr. J. Biotech., 10 (53): 11 039–11 047.Google Scholar
  12. Amer N, Alwachi S N. 2012. Histological changes on the liver of the mothers treated with uranyl acetate in albino rats. Tikrit J. Pure Sci., 17 (4): 49–54.Google Scholar
  13. Ashman P U, Seed J R. 1973. Biochemical studies in the vole, Micritous montamus. I. The daily variation of hepatic-6-phosphatase and liver glycogen. Comp. Biochem. Physiol., 45: 365–378.Google Scholar
  14. Banaee M, Sureda A, Mirvaghefi A R, Ahmadi K. 2011. Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss). Pest. Biochem. Physiol., 99 (1): 1–6.CrossRefGoogle Scholar
  15. Barillet S, Adam C, Palluel O, Devaux A. 2007. Bioaccumulation, oxidative stress, and neurotoxicity in Danio rerio exposed to different isotopic compositions of uranium. Environ. Toxicol. Chem., 26 (3): 497–505.CrossRefGoogle Scholar
  16. Black J A, Roberts R F, Johnson D M et al. 1973. The significance of physicochemical variables in aquatic bioassays of heavy metals. In: Glass G E ed. Bioassay Techniques and Environmental Chemistry. Ann Arbor Science Publishers Inc., Ann Arbor, MI.Google Scholar
  17. Blaxhall P C, Daisley K W. 1973. Routine haematological methods for use with fish blood. J. Fish Biol., 5 (6): 771–781.CrossRefGoogle Scholar
  18. Bradbury S P, Symonic D M, Coats J R, Atchison G J. 1987. Toxicity of fenvalerate and its constituent isomers to the fathead minnow, Pi m ephales prome la s, and bluegill, Lepomis macrochirus. Bull. Environ. Cont. Toxicol., 38 (5): 727–735.CrossRefGoogle Scholar
  19. Bywater J F, Banaczykowski R, Baily M. 1991. Sensitivity to uranium of six species of tropical freshwater fishes and four species of cladocerans from northern Australia. Environ. Toxicol. Chem., 10 (11): 1 449–1 458.CrossRefGoogle Scholar
  20. Cambray R S, Bakins J D. 1980. Studies of Environmental Radioactivity in Cumbria: Part I. Concentration of Plutonium and Caesium 137 in Environmental Samples from West Cumbria and A Possible Maritime Effect. UK Atomic Energy Res. Establ. Harwell Rept. 15p.Google Scholar
  21. Cheng K L, Hogan A C, Parry D L et al. 2010. Uranium toxicity and speciation during chronic exposure to the tropical freshwater fish, Mogurnda mogurnda. Chemosphere, 79 (5): 547–554.CrossRefGoogle Scholar
  22. Cooley H M, Evans R E, Klaverkamp J F. 2000. Toxicology of dietary uranium in lake whitefish (Coregonus clupeaformis). Aquat. Toxicol., 48 (4): 495–515.CrossRefGoogle Scholar
  23. D’Ilio S, Violante N, Senofonte O, Petrucci F. 2007. Determination of depleted uranium in fish: validation of a confirmatory method by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS). Anal. Chem. Acta, 597 (2): 195–202.CrossRefGoogle Scholar
  24. Daraie B, Pourahmad J, Hamidi-Pour N et al. 2012. Uranyl acetate induces oxidative stress and mitochondrial membrane potential collapse in the human dermal fibroblast primary cells. Iran. J. Pharm. Res., 1 1 (2): 495–501.Google Scholar
  25. Darolles C, Broggio D, Feugier A et al. 2010. Different genotoxic profiles between depleted and enriched uranium. Toxicol. Lett., 192 (3): 337–348.CrossRefGoogle Scholar
  26. Domingo J L. 2001. Reproductive and developmental toxicity of natural and depleted uranium: a review. Repr. Toxicol., 15 (6): 603–609.CrossRefGoogle Scholar
  27. Farmer G J, Ashfield D, Samont H S. 1979. Effects of zinc on juvenile Atlantic salmon Salmo Salar: acute toxicity, food intake, growth and bioaccumulation. Environ. Pollut., 19 (2): 103–117.CrossRefGoogle Scholar
  28. Finney D J. 1971. Probit Analysis. 3 rd edn. Cambridge Press, New York.Google Scholar
  29. Gagnaire B, Bado-Nilles A, Sanchez W. 2014. Depleted uranium disturbs immune parameters in zebra fish, Danio rerio: an ex vivo/ in vivo experiment. Arch. Environ. Contam. Toxicol., 67 (3): 426–435.CrossRefGoogle Scholar
  30. Gilman A P, Villeneuve D C, Secours V E et al. 1998. Uranyl nitrate: 28 day and 91-day toxicity studies in the Sprague-Dawley rat. Toxicol. Sci., 41 (1): 117–128.Google Scholar
  31. Goldman M, Yaari A, Doshnitzki Z et al. 2006. Nephrotoxicity of uranyl acetate: effect on rat kidney brush border membrane vesicles. Arch. Toxicol., 80 (7): 387–393.CrossRefGoogle Scholar
  32. Goulet R R, Fortin C, Spry D J. 2011. Uranium. In: Wood C M, Farrell A P, Brauner C J eds. Fish Physiology (Homeostasis and Toxicology of Non-Essential Metals). Elsevier Inc. 31, p.391–428.CrossRefGoogle Scholar
  33. Guéguen Y, Souidi M, Baudelin C et al. 2006. Short-term hepatic effects of depleted uranium on xenobiotic and bile acid metabolizing cytochrome P450 enzymes in the rat. Arch. Toxicol., 80 (4): 187–195.CrossRefGoogle Scholar
  34. Hamilton E I. 1980. Concentration and distribution of Uranium in Mytilus edulis and associated materials. Mar. Ecol. Prog. Ser., 2: 61–73.CrossRefGoogle Scholar
  35. Hamilton S J. 1995. Hazard assessment of inorganics to three endangered fish in the Green River, Utah. Ecotoxicol. Environ. Safety, 30 (2): 134–142.CrossRefGoogle Scholar
  36. Hartsock W J, Cohen J D, Segal D J. 2007. Uranyl acetate as a direct inhibitor of DNA-binding proteins. Chem. Res. Toxicol., 20 (5): 784–789.CrossRefGoogle Scholar
  37. Hinck J E, Linder G, Finger S et al. 2010. Biological pathways of exposure and ecotoxicity values for uranium and associated radionuclides. In: Alpine E A ed. Hydrological, Geological and Biological Site Characterization of Breccia Pipe Uranium Deposits in Northern Arizona. U. S. Geological Survey, Scientific Investigations Report 2010-5025. 354p.Google Scholar
  38. Jaffer Ali H A, Rani V J. 2009. Effect of phosalone on haematological indices in the tilapia, Oreochromis mossambicus. Turk. J. Vet. Anim. Sci., 33 (5): 407–411.Google Scholar
  39. Jeney G, Nemcsok J, Jeney Z S, Olah J. 1991. Acute effect of sublethal ammonia concentrations on common carp (Cyprinus carpio L.). II. Effect of ammonia on blood plasma transaminases (GOT, GPT), G1DH enzyme activity, and ATP value. Aquaculture, 104 (1-2): 149–156.Google Scholar
  40. Johnson C M, Toledo M C F. 1993. Acute toxicity of endosulfan to the fish Hyphessobrycon bifasciatus and Brachydanio rerio. Archiv. Environ. Conta. Toxicol., 24 (2): 151–155.CrossRefGoogle Scholar
  41. Khangarot B S. 1991. Toxicity of metals to a freshwater tubificid worm, Tubifex tubifex (Muller). Bull. Environ. Contam. Toxicol., 46 (6): 906–912.CrossRefGoogle Scholar
  42. Lowry O H, Rosebrough N J, Farr A L, Randall R J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193: 265–275.Google Scholar
  43. Mazeaud M M, Mazeaud F, Donaldson E M. 1977. Primary and secondary effects of stress in fish: some new data with a general review. Trans. Am. Fish. Soc., 106 (3): 201–212.CrossRefGoogle Scholar
  44. McKim J M, Christensen G M, Hunt E P. 1970. Changes in the blood of brook Trout (Salvelinus fontinalis) after shortterm and long-term exposure to copper. Can. J. Fish. Res. Board, 27 (10): 1 883–1 889.CrossRefGoogle Scholar
  45. McKim J M. 1985. Early life stage toxicity tests. In: Rand G M, Petrocelli S R eds. Fundamentals of Aquatic Toxicology. Hemisphere Publishing, Washington DC. p.58–86.Google Scholar
  46. Montgomery R. 1957. Determination of glycogen. Arch. Biochem. Biophys., 67 (2): 378–386.CrossRefGoogle Scholar
  47. Mousa M M A, El-Ashram A M M, Hamed M. 2008. Effects of Neem leaf extract on freshwater fishes and zooplankton community. In: 8 th International Symposium on Tilapia in Aquaculture. The Central Laboratory for Aquaculture Research, Cairo, Egypt. Oct. p.12–14.Google Scholar
  48. Mulcahy M F. 1975. Fish blood changes associated with disease: a hematological study of pike lymphoma and salmon ulcerative dermal necrosis. In: Ribelin W E, Migaki Madison K eds. The Pathology of Fishes. University of Wisconsin Press, Madison. p.925–944.Google Scholar
  49. Murty A S. 1986. Toxicity of Pesticides to Fish. CRC Press Inc Boca Raton, FL. 143p.Google Scholar
  50. Nelson D L, Cox M M. 2000. Lehninger Principles of Biochemistry. 3 rd edn. Worth Publishers, New York.Google Scholar
  51. Nikolsky G V. 1963. The Ecology of Fishes. Academic Press, London, New York.Google Scholar
  52. Omoniyi I, Agbon A O, Sodunke S A. 2002. Effect of lethal and sub-lethal concentrations of Tobacco (Nicotiana tobaccum) leaf dust extract on weight and hematological changes in Clarias gariepinus (Burchell). J. Appl. Sci. Environ. Manag., 6 (2): 37–42.Google Scholar
  53. Ozmen M, Yurekli M. 1998. Subacute toxicity of uranyl acetate in Swiss-Albino mice. Environ. Toxicol. Pharmacol., 6 (2): 111–115.CrossRefGoogle Scholar
  54. Palanivelu P, Vijayavel K, Balasubramanian S E, Balasubramanian M P. 2005. Influence of insecticidal derivative (cartap hydrochloride) from the marine polycheate on certain enzyme systems of the fresh water fish Oreochromis mossambicus. J. Environ. Biol., 26 (2): 191–195.Google Scholar
  55. Parkhurst B R, Elder R G, Meyer J S et al. 1984. An environmental hazard evaluation of uranium in a rocky mountain stream. Environ. Toxicol. Chem., 3 (1): 113–124.CrossRefGoogle Scholar
  56. Periyakaruppan A, Kumar F, Sarkar S et al. 2007. Uranium induces oxidative stress in lung epithelial cells. Arch Toxicol., 81 (6): 389–395.CrossRefGoogle Scholar
  57. Priyamvada P, Khan S A, Khan M W et al. 2010. Studies on the protective effect of dietary fish oil on uranyl-nitrateinduced nephrotoxicity and oxidative damage in rat kidney. Prostagl. Leukotr. Essent. Fatty Acids, 82 (1): 35–44.CrossRefGoogle Scholar
  58. Rao D S. 2010. Carbaryl Induced Changes in the Haematological, Serum Biochemical and Immunological Responses of Common Carp, Cyprinus carpio, (L.) with Special Emphasis on Herbal Extracts as Immunomodulators. Ph. D. Thesis, Andhra University, India. 235p.Google Scholar
  59. Rice T R, Baptist J P, Price T J. 1965. Accumulation of mixed fishes. products by marine organisms. In: Pearson E A ed. Advances in Water Pollution Research. Pergamon Press, New York, Frankfurt-am-Main.Google Scholar
  60. Roche H, Bogé G. 1996. Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Mar. Environ. Res., 41 (1): 27–43.CrossRefGoogle Scholar
  61. Salah El-Deen M A, Sharada H I, Abu-El-Ella S M. 1996. Some metabolic alteration in grass carp (Ctenopharyngodon idella) induced by exposure to cadmium. J. Egypt. Ger. Soc. Zool., 21: 441–457.Google Scholar
  62. Schaedler C B. 1981. Stress and compensation in teleostean fishes: response to social and physical factors. In: Pickering A D ed. Stress and Fish. Academic Press, New York, USA. p.295–322.Google Scholar
  63. Shekhanova I A. 1980. Radiological aspects of surface water protection under condition of peaceful uses of nuclear energy. In: Enko A I ed. Problems of Animal Ecology. Nauka Publication, USSR.Google Scholar
  64. Simon O, Floc’h E, Geffroy B, Frelon S. 2014. Exploring ecotoxicological fish bioassay for the evaluation of uranium reprotoxicity. Environ. Toxicol. Chem., 33 (8): 1 817–1 824.CrossRefGoogle Scholar
  65. Skidmore J F. 1965. Resistance to zinc sulphate of the zebra fish (Brachydani o rerio, Hamilton-Buchanan) at different phases of its life history. Ann. Appl. Biol., 56 (1): 47–53.CrossRefGoogle Scholar
  66. Stearns D M, Yazzie M, Bradley A S et al. 2005. Uranyl acetate induces hprt mutations and uranium-DNA adducts in Chinese hamster ovary EM9 cells. Mutag enesis, 20 (6): 417–423.CrossRefGoogle Scholar
  67. Strange R J, Schreck C B, Golden J T. 1977. Corticoid stress responses to handling and temperature in salmonids. Trans. Am. Fish. Soc., 106 (3): 213–218.CrossRefGoogle Scholar
  68. Van Vuren J H J. 1986. The effects of toxicants on the haematology of Labeo umbratus (Teleostei: Cyprinidae). Comp. Biochem. Physiol. C: Comp. Pharm., 8 3 (1): 155–159.CrossRefGoogle Scholar
  69. Vicente-Vicente L, Quiros Y, Pérez-Barriocanal F et al. 2010. Nephrotoxicity of uranium: pathophysiological, diagnostic and therapeutic perspectives. Toxicol. Sci., 118 (2): 324–347.CrossRefGoogle Scholar
  70. Webb J N, Levy H B. 1955. A sensitive method for the determination of deoxyribonucleic acid in tissues and microorganisms. J. Biol. Chem., 213 (1): 107–117.Google Scholar
  71. Winkaler E U, Santosh T R M, Machdo-Neto J G et al. 2007. Acute lethal and sub-lethal effects of neem leaf extract on the neotropical freshwater fish Prochilodus lineatus. Comp. Biochem. Physiol. C: Toxicol. Pharm., 145 (2): 236–244.Google Scholar
  72. Yazzie M, Gamble S L, Civitello E R, Stearn D M. 2003. Uranyl acetate causes DNA single strand breaks in vitro in the presence of ascorbate (vitamin C). Chem. Res. Toxicol., 16 (4): 524–530.CrossRefGoogle Scholar
  73. Zaki M S, Mostafa S O, Nasr S et al. 2009. Biochemical, clinicophathlogical and microbial changes in Clarias gariepinus exposed to pesticide malathion and climate changes. Rep. Opn., 6–11.Google Scholar
  74. Zymmerman K L, Barber D S, Ehrich M F et al. 2007. Temporal clinical chemistry and microscopic renal effects following acute uranyl acetate exposure. Toxicol. Path., 35 (7): 1 000–1 009.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Khalid A. Al-Ghanim
    • 1
  • Zubair Ahmad
    • 1
  • Hmoud F. Al-Kahem Al-Balawi
    • 1
  • Fahad Al-Misned
    • 1
  • Shahid Maboob
    • 1
  • El-Amin M. Suliman
    • 1
  1. 1.Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations