Skip to main content

Advertisement

Log in

Dormant stages of crustaceans as a mechanism of propagation in the extreme and unpredictable environment in the Crimean hypersaline lakes

  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 2016

Abstract

A pool of dormant stages of planktonic organisms in saline lakes is a substantial component in the plankton communities; we need to take it into account to understand plankton dynamics. Hypersaline water bodies in Crimea, the largest peninsula in the Black Sea, constitute a very characteristic and peculiar habitat type in the region. We examined the presence of crustacean resting stages in sediments of dried up sites of the Crimean hypersaline lakes. Sediment samples were taken in 9 different lakes. Experiments performed on the hatching of these resting stages showed the presence of Moina salina (Cladocera), parthenogenetic Artemia and Artemia urmiana (Anostraca), Eucypris mareotica (inflata) (Ostracoda), and Cletocamptus retrogressus (Harpacticoida). Comparing the experimental results obtained with clean dried brine shrimp cysts and those kept in sediment samples, it was noted that clean cysts hatched much faster than those from sediments did. Some components in bottom sediments slow down and desynchronize hatching from resting eggs in different groups of crustaceans. The sediments of different lakes inhibited the nauplii output from Artemia and ostracod resting eggs to different degrees. More data are needed before we can discuss the reasons of this inhibition. The nonsynchronous output of active stages from the bottom resting ones may be an adaptation that allows crustacean species to exist in extreme and unpredictably changing environments, avoiding the risk that all may emerge at once under unsuitable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abatzopoulos T J, Amat F, Baxevanis A D, Belmonte G, Hontoria F, Maniatsi S, Moscatello S, Mura G, Shadrin N V. 2009. Updating geographic distribution of Artemia urmiana Gunther, 1890 (Branchiopoda: Anostraca) in Europe: an integrated and interdisciplinary approach. Int. Rev. Hydrobiol., 94: 560–579.

    Article  Google Scholar 

  • Anufriieva E, Holynska M, Shadrin N. 2014. Current invasions of Asian Cyclopid species (Copepoda: Cyclopidae) in Crimea, with taxonomical and zoogeographical remarks on the hypersaline and freshwater fauna. Annales Zoologici, 64: 109–130.

    Article  Google Scholar 

  • Anufriieva E, Shadrin N. 2014. Resting stages of Crustaceans in the Crimean hypersaline lakes (Ukraine) and their ecological role. Acta Geol. Sin. (English Edition), 88 (Supp. 1): 46–49.

    Article  Google Scholar 

  • Belmonte G, Moscatello S, Batogova E A, Pavlovskaya T, Shadrin N V, Litvinchuk, L F. 2012. Fauna of hypersaline lakes of the Crimea (Ukraine). Thalassia Salentina, 34: 11–24.

    Google Scholar 

  • Brendonck L, De Meester L. 2003. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia, 491: 65–84.

    Article  Google Scholar 

  • Champeau A, Francezon P. 1991. Laying and fecundity of females of the harpacticoid copepod Cletocamptus retrogressus, Schmankevitch, after their survival of drying. C. R. Acad. Sci. Paris, Ser. III, 312 (8): 389–393.

    Google Scholar 

  • Clegg J S. 1997. Embryos of Artemia franciscana survive four years of continuous anoxia: the case for complete metabolic rate depression. J. Exp. Biol., 200: 467–475.

    Google Scholar 

  • Dahms H U. 1995. Dormancy in the Copepoda—an overview. Hydrobiologia, 306: 199–211.

    Article  Google Scholar 

  • Evans M E, Dennehy J J. 2005. Germ banking: bet-hedging and variable release from egg and seed dormancy. Quart. Rev. Biol., 80: 431–451.

    Article  Google Scholar 

  • Frisch D, Green A J, Figuerola J. 2007. High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds. Aquat. Sci., 69: 568–574.

    Article  Google Scholar 

  • Fryer G. 1996. Diapause, a potent force in the evolution of freshwater crustaceans. Hydrobiologia, 320: 1–14.

    Article  Google Scholar 

  • Hairston N G, Van Brunt N A, Kearns C M, Engstrom D R. 1995. Age and survivorship of diapausing eggs in a sediment egg bank. Ecology, 76: 1706–1711.

    Article  Google Scholar 

  • Hairston N G. 1996. Zooplankton egg banks as biotic reservoirs in changing environments. Limnol. Oceanogr., 41: 1087–1092.

    Article  Google Scholar 

  • Lopez L C S, Goncalves D A, Mantovani A, Rios R I. 2002. Bromeliad ostracods pass through amphibian (Scinaxax perpusillus) and mammalian guts alive. Hydrobiologia, 485: 209–211.

    Article  Google Scholar 

  • Marcus N H. 1984. Recruitment of copepod nauplii into the plankton: importance of diapause eggs and benthic processes. Mar. Ecol. Prog. Ser., 15: 47–54.

    Article  Google Scholar 

  • Menu F, Roebuck J P, Viala M. 2000. Bet-hedging diapause strategy in stochastic environment. Am. Naturalist, 155: 724–734.

    Article  Google Scholar 

  • Moscatello S, Belmonte G. 2004. Active and resting stages of zooplankton and its seasonal evolution in a hypersaline temporary pond of the Mediterranean coast (the Vecchia Salina, SE Italy). Sci. Mar., 68: 491–500.

    Google Scholar 

  • Moscatello S, Belmonte G. 2009. Egg banks in hypersaline lakes of the South-East Europe. Sal. Syst., 5: 3.

    Article  Google Scholar 

  • Philippi T, Seger J. 1989. Hedging ones evolutionary bets, revisited. Trends Ecol. Evol., 4: 41–44.

    Article  Google Scholar 

  • Proctor V W, Malone C R. 1965. Further evidence of the passive dispersal of small aquatic organism via the intestinal tract of birds. Ecology, 46: 728–729.

    Article  Google Scholar 

  • Radzikowski J. 2013. Resistance of dormant stages of planktonic invertebrates to adverse environmental conditions. J. Plankton Res., 35: 707–723.

    Article  Google Scholar 

  • Rossi V, Bartoli M, Bellavere C, Gandolfi A, Salvador E, Menozzi P. 2004. Heterocypris (Crustacea: Ostracoda) from the Isole Pelagie (Sicily, Italy): hatching phenology of resting eggs. Ital. J. Zool., 71: 223–231.

    Article  Google Scholar 

  • Shadrin N V, Zagorodnya Yu A, Nagorskaya L L, Samchyshyna L. 2009. Finds of Branchinella spinosa (Anostraca, Thamochephalidae) in the salt lakes of the Crimean peninsula (Ukraine). Vestnik Zoologii, 43: 208.

    Google Scholar 

  • Shadrin N V. 2009. The Crimean hypersaline lakes: towards development of scientific basis of integrated sustainable management. Proceedings of 13th World Lake Conference, Wuhan, China, 1-5 November, 2009. http://www.ilec.or.jp/eg/wlc/wlc13/wlc13papers1.html; http://wldb.ilec.or.jp/data/ilec/WLC13_Papers/S12/s12-1.pdf.

    Google Scholar 

  • Shadrin N V. 2012. Crustaceans in hypersaline water bodies: specificity of existence and adaptations. In: Proceedings of Int. Conference-school “Actual problems of crustacean study in continental waters”, 5-9 November, 2012. Kostroma: Kostroma Publishing House, 2012. 316–319. (in Russian)

    Google Scholar 

  • Shadrin N V. 2013. Alternative stable states of lake ecosystems and critical salinities: is there a rigid connection? Proc. Zool. Inst. Suppl., 3: 214–221. (in Russian)

    Google Scholar 

  • Vandekerkhove J, Martens K, Rossetti G, Mesquita-Joanes F, Namiotko T. 2013. Extreme tolerance to environmental stress of sexual and parthenogenetic resting eggs of Eucypris virens (Crustacea, Ostracoda). Freshw. Biol., 58: 237–247.

    Article  Google Scholar 

  • Vandekerkhove J, Niessen B, Declerck S, Jeppesen E, Porcuna J M C, Brendonck L, De Meester L. 2004. Hatching rate and hatching success with and without isolation of zooplankton resting stages. Hydrobiologia, 526: 235–241.

    Article  Google Scholar 

  • Vopel K, Dehmlow J, Johansson M, Arlt G. 1998. Effects of anoxia and sulphide on populations of Cletocamptus confluens (Copepoda, Harpacticoida). Mar. Ecol. Prog. Ser., 175: 121–128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Anufriieva.

Additional information

Our good friend, co-author and long-time collaborator Mr. Oleg EREMIN passed away on November 18, 2014 in a traffic accident during a sampling expedition to the Crimean salt lakes. The authors dedicate this paper to his memory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadrin, N.V., Anufriieva, E.V., Amat, F. et al. Dormant stages of crustaceans as a mechanism of propagation in the extreme and unpredictable environment in the Crimean hypersaline lakes. Chin. J. Ocean. Limnol. 33, 1362–1367 (2015). https://doi.org/10.1007/s00343-015-4363-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4363-8

Keywords

Navigation