Skip to main content
Log in

Automatic detection of oceanic mesoscale eddies in the South China Sea

  • Dynamics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

This study focuses on the spatial and temporal distribution characteristics of mesoscale eddies in the South China Sea (SCS). An automatic eddy detection method, based on the geometry of velocity vectors, was adopted to obtain an eddy dataset from 21 years of satellite altimeter data. Analysis revealed that the number of anticyclonic eddies was nearly equal to cyclonic eddies; in the SCS, cyclonic eddies are generally stronger than anticyclonic eddies and anticyclonic eddies are larger and longer-lived than cyclonic eddies. Anticyclonic eddies tend to survive longer in the spring and summer, while cyclonic eddies have longer lifetimes in the autumn and winter. The characteristics and seasonal variations of eddies in the SCS are strongly related to variations in general ocean circulation, in the homogeneity of surface wind stress, and in the unevenness of bottom topography in the SCS. The spatial and temporal variation of mesoscale eddies in the SCS could, therefore, be an important index for understanding local hydrodynamics and regional climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chaigneau A, Gizolme A, Grados C. 2008. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr., 79 (2-4): 106–119, http://dx.doi.org/10.1016/j.pocean.2008.10.013.

    Google Scholar 

  • Chelton D B, Schlax M G, Samelson R M, de Szoeke R A. 2007. Global observations of large oceanic eddies. Geophys. Res. Lett., 34 (15), http://dx.doi.org/10.1029/2007GL030812.

  • Chen G X, Gan J P, Xie Q, Chu X Q, Wang D X, Hou Y J. (2012. Eddy heat and salt transports in the South China Sea and their seasonal modulations. J. Geophys. Res., 117 (C5), http://dx.doi.org/10.1029/2011JC007724.

  • Chen G X, Hou Y J, Chu X Q. 2011. Mesoscale eddies in the South China Sea: mean properties, spatiotemporal variability, and impact on thermohaline structure. J. Geophys. Res., 116 (C6), http://dx.doi.org/10.1029/ 2010JC006716.

  • Cushman-Roisin B, Tang B Y, Chassignet E P. 1990. Westward motion of mesoscale eddies. J. Phys. Oceanogr., 20 (5): 758–768, http://dx.doi.org/10.1175/1520-0485(1990)020<0758:WMOME>2.0.CO;2.

    Article  Google Scholar 

  • Holte J, Straneo F, Moffat C, Weller R, Farrar J T. 2013. Structure and surface properties of eddies in the southeast Pacific Ocean. J. Geophys. Res.: Oceans, 118 (5): 2295–2309, http://dx.doi.org/10.1002/jgrc.20175.

    Article  Google Scholar 

  • Hu J Y, Gan J P, Sun Z Y, Zhu J, Dai M H. 2011. Observed three-dimensional structure of a cold eddy in the southwestern South China Sea. J. Geophys. Res., 116 (C5), http://dx.doi.org/10.1029/2010JC006810.

  • Hu J Y, Kawamura H, Hong H S, Qi Y Q. 2000. A review on the currents in the south china sea: seasonal circulation, South China sea warm current and Kuroshio intrusion. J. Oceanogr., 56 (6): 607–624, http://dx.doi.org/10.1023/A:1011117531252.

    Article  Google Scholar 

  • Hwang C, Chen S A. 2000. Circulations and eddies over the South China Sea derived from TOPEX/Poseidon altimetry. J. Geophys. Res., 105 (C10): 23 943–23 965, http://dx.doi.org/10.1029/2000JC900092.

    Article  Google Scholar 

  • Isern-Fontanet J, García-Ladona E, Font J. (2002. Identification of marine eddies from altimetric maps. J. Atmos. Ocean ic Tech nol., 20 (5): 772–778, http://dx.doi.org/10.1175/1520-0426(2003)20<772:IOMEFA>2.0.CO;2.

    Article  Google Scholar 

  • Lin X Y, Guan Y P, Liu Y. 2013. Three-dimensional structure and evolution process of Dongsha Cold Eddy during autum. 2000. J. Tropical Oceanogr., 32 (2): 55–65, http://dx.doi.org/10.3969/j.issn.1009-5470.2013.02.006.

    Google Scholar 

  • Liu Y, Dong C M, Guan Y P, Chen D K, McWilliams J, Nencioli F. 2012. Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep Sea Res. I: Ocean. Res. Paper., 68: 54–67, http://dx.doi.org/10.1016/j.dsr.2012.06.001.

    Article  Google Scholar 

  • McWilliams J C. 2008. The nature and consequences of oceanic eddies. In: Matthew W H, Hiroyasu H eds. Ocean Modeling in an Eddying Regime, Vol. 177 of Geophysical Monograph Series. American Geophysical Union, Washington DC, USA. p.5–15.

    Chapter  Google Scholar 

  • Morrow R, Birol F, Griffin D, Sudre J. (2004. Divergent pathways of cyclonic and anti-cyclonic ocean eddies. Geophys. Res. Lett., 31 (24), http://dx.doi.org/10.1029/2004gl020974.

  • Nencioli F, Dong C M, Dickey T, Washburn L, McWilliams J C. 2010. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern California Bight. J. Atmos. Ocean ic Tech nol., 27 (3): 564–579, http://dx.doi.org/10.1175/2009jtecho725.1.

    Article  Google Scholar 

  • Penven P. 2005. Average circulation, seasonal cycle, and mesoscale dynamics of the Peru current system: a modeling approach. J. Geophys. Res., 110 (C10), http://dx.doi.org/10.1029/2005JC002945.

  • Pullen J, Doyle J D, May P, Chavanne C, Flament P, Arnone R A. 2008. Monsoon surges trigger oceanic eddy formation and propagation in the lee of the Philippine Islands. Geophys. Res. Lett., 35 (7), http://dx.doi.org/10.1029/2007GL033109.

  • Tajima T, Nakamura T. 2005. Experiments to study the betaeffect in atmospheric dynamics. Experiments in Fluids, 39 (3): 623–629, http://dx.doi.org/10.1007/s00348-005-1007-3.

    Article  Google Scholar 

  • Wang G H, Chen D K, Su J L. 2008. Winter eddy genesis in the eastern South China Sea due to orographic wind jets. J. Phys. Oceanogr., 38 (3):726–732, http://dx.doi.org/10.1175/2007JPO3868.1.

    Article  Google Scholar 

  • Wang G H. 2003. Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett., 30 (21), http://dx.doi.org/10.1029/2003GL018532.

  • Xiu P, Chai F, Shi L, Xue H J, Chao Y. 2010. A census of eddy activities in the South China Sea during 1993–2007. J. Geophys. Res., 115 (C3), http://dx.doi.org/10.1029/2009JC005657.

    Google Scholar 

  • Yang H Y, Wu L X, Liu H L, Yu Y Q. 2013. Eddy energy sources and sinks in the South China Sea. J. Geophys. Res., 118 (9): 4716–4726, http://dx.doi.org/10.1002/jgrc.20343.

    Article  Google Scholar 

  • Yi J, Du Y, He Z, Zhou C. 2014. Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly. Ocean Science, 10 (1): 39–48, http://dx.doi.org/10.5194/os-10-39-2014.

    Article  Google Scholar 

  • Yuan D, Han W, Hu D. 2007. Anti-cyclonic eddies northwest of Luzon in summer-fall observed by satellite altimeters. Geophysical Research Letters, 34(13).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Shen  (申辉).

Additional information

Supported by the National High Technology Research and Development Program of China (863 Program) (No. 2013AA09A505), the National Natural Science Foundation of China (No. U1133001), and the NSFC-Shandong Joint Fund for Marine Science Research Centers Grant (No. U1406401)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Q., Shen, H. Automatic detection of oceanic mesoscale eddies in the South China Sea. Chin. J. Ocean. Limnol. 33, 1334–1348 (2015). https://doi.org/10.1007/s00343-015-4354-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4354-9

Keyword

Navigation