Chinese Journal of Oceanology and Limnology

, Volume 33, Issue 5, pp 1115–1123 | Cite as

A new algorithm for sea-surface wind-speed retrieval based on the L-band radiometer onboard Aquarius

  • Jin Wang (王进)
  • Jie Zhang (张杰)
  • Chenqing Fan (范陈清)
  • Jing Wang (王晶)Email author
Remote sensing


Aquarius is the second satellite mission to focus on the remote sensing of sea-surface salinity from space and it has mapped global sea-surface salinity for nearly 3 years since its launch in 2011. However, benefiting from the high atmospheric transparency and moderate sensitivity to wind speed of the L-band brightness temperature (TB), the Aquarius L-band radiometer can actually provide a new technique for the remote sensing of wind speed. In this article, the sea-surface wind speeds derived from TBs measured by Aquarius’ L-band radiometer are presented, the algorithm for which is developed and validated using multisource wind speed data, including WindSat microwave radiometer and National Data Buoy Center buoy data, and the Hurricane Research Division of the Atlantic Oceanographic and Meteorological Laboratory wind field product. The error analysis indicates that the performance of retrieval algorithm is good. The RMSE of the Aquarius wind-speed algorithm is about 1 and 1.5 m/s for global oceans and areas of tropical hurricanes, respectively. Consequently, the applicability of using the Aquarius L-band radiometer as a near all-weather wind-speed measuring method is verified.


microwave radiometer Aquarius wind speed L-band 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amarin R A, Jones W L, El-Nimri S F et al. 2012. Hurricane wind speed measurements in rainy conditions using the airborne hurricane imaging radiometer (HIRAD). IEEE Trans. GeoSci. Remote Sens., 50 (1): 180–192.CrossRefGoogle Scholar
  2. Blume H J C, Kendall B M, Fedors J C. 1978. Measurement of ocean temperature and salinity via microwave radiometry. Boundary-Layer Meteorology, 13 (1): 295–308.CrossRefGoogle Scholar
  3. Boutin J, Martin N, Reverdin G et al. 2013. Sea surface freshening inferred from SMOS and ARGO salinity: impact of rain. Ocean Sci., 9 (1): 183–192.CrossRefGoogle Scholar
  4. Boutin J, Martin N, Yin X et al. 2012. First assessment of SMOS data over open ocean: Part II—sea surface salinity. IEEE Trans. GeoSci. Remote Sens., 50 (5): 1662–1675.CrossRefGoogle Scholar
  5. Droppleman J D, Mennelin R A. 1970. An airborne measurement of salinity variations of the Mississippi river overflow. J. Geophys. Res., 78 (30): 5909–5013.CrossRefGoogle Scholar
  6. Gabarro C, Font J, Camps A et al. 2004. A new empirical model of sea surface microwave emissivity for salinity remote sensing. Geophysical Research Letters, 31 (1): 1–5.CrossRefGoogle Scholar
  7. Guimbard S, Gourrion J, Portabella M et al. 2012. SMOS semi-empirical ocean forward model adjustment. IEEE Trans. GeoSci. Remote Sens., 50 (5): 1676–1687.CrossRefGoogle Scholar
  8. Hwang P A. 2012. Foam and roughness effects on passive microwave remote sensing of the ocean. IEEE Trans. GeoSci. Remote Sens., 50 (8): 2978–2985.CrossRefGoogle Scholar
  9. Johnson J T. 2006. An efficient two-scale model for the computation of thermal emission and atmospheric reflection from the sea surface. IEEE Trans. GeoSci. Remote Sens., 44 (3): 560–568.CrossRefGoogle Scholar
  10. Klein L, Swift C T. 1977. An improved model for the dielectric constant of sea water at microwave. IEEE Transactions On Frequencies, Antennas and Propagation, 25 (1): 104–111.CrossRefGoogle Scholar
  11. Le Vine D M, Lagerloef G S E, Colomb F R et al. 2007. Aquarius: an instrument to monitor sea surface salinity from space. IEEE Trans. GeoSci. Remote Sens., 45 (7): 2040–2050.CrossRefGoogle Scholar
  12. Le Vine D M, Lagerloef G S E, Torrusio S E. 2010. Aquarius and remote sensing of sea surface salinity from space. Proceedings of the IEEE, 98 (5): 688–703.CrossRefGoogle Scholar
  13. Lerner R M, Hollinger J P. 1977. Analysis of 1.4 GHz radiometric measurements from Skylab. Remote Sensing of Environment, 6 (4): 251–269.CrossRefGoogle Scholar
  14. Mecklenburg S, Drusch M, Kerr Y H et al. 2012. ESA’s soil moisture and ocean salinity mission: mission performance and operations. IEEE Trans. GeoSci. Remote Sens., 50 (5): 1354–1366.CrossRefGoogle Scholar
  15. Meissner T, Ricciardulli L, Wentz F J. (2011. All-weather wind vector measurements from intercalibrated active and passive microwave satellite sensors. IEEE IGRSS, 1509–1511.Google Scholar
  16. Meissner T, Wentz F J. (2009. Wind-vector retrievals under rain with passive satellite microwave radiometers. IEEE Trans. GeoSci. Remote Sens., 47 (9): 3065–3083.CrossRefGoogle Scholar
  17. Powell M D, Murillo S, Dodge P et al. 2010. Reconstruction of hurricane Katrina’s wind fields for storm surge and wave hind casting. Ocean Engineering, 37 (1): 26–36.CrossRefGoogle Scholar
  18. Qi Z, Wei E. 2012. Analysis of cost functions for retrieving sea surface salinity. Journal of Ocean University of China, 11 (2): 147–152.CrossRefGoogle Scholar
  19. Reul N, Tenerelli J, Boutin J et al. 2012a. Overview of the first SMOS sea surface salinity products. Part I: quality assessment for the second half 2010. IEEE Trans. GeoSci. Remote Sens., 50 (5): 1636–1647.CrossRefGoogle Scholar
  20. Reul N, Tenerelli J, Chapron B et al. 2012b. SMOS satellite L-band radiometer: A new capability for ocean surface remote sensing in hurricanes. J. Geophys. Res., 117 (C2): 1–24.Google Scholar
  21. Tang W, Yueh S H, Fore A et al. 2013. The rain effect on Aquarius’ L-band sea surface brightness temperature and radar backscatter. Remote Sensing of Environment, 137 (10): 147–157.CrossRefGoogle Scholar
  22. Wentz F, Le Vine D, Meissner T et al. 2012. Aquarius salinity retrieval algorithm, Algorithm Theoretical Basis Document, Version 2, Addendum I (2012), Addendum II (2013), Addendum III (2014), RSS Technical Report 082912, Remote Sensing Systems, Santa Rosa, California,, Accessed on 2014–04-28.Google Scholar
  23. Yin X, Boutin J, Spurgeon P. 2012. First assessment of SMOS data over open ocean: Part I—Pacific Ocean. IEEE Trans. GeoSci. Remote Sens., 50 (5): 1648–1661.CrossRefGoogle Scholar
  24. Yueh S, Dinardo S J, Fore A et al. 2010. Passive and active L-band microwave observations and modeling of ocean surface winds. IEEE Trans. GeoSci. Remote Sens., 48 (8): 3087–3100.CrossRefGoogle Scholar
  25. Yueh S, Fore A, Freedman A et al. 2012. Aquarius Scatterometer Algorithm Theoretical Basis Document, Version 1, Jet Propulsion Laboratory,, Accessed on 2014–04-28.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jin Wang (王进)
    • 1
    • 3
  • Jie Zhang (张杰)
    • 2
  • Chenqing Fan (范陈清)
    • 2
  • Jing Wang (王晶)
    • 1
    Email author
  1. 1.College of Information Science and EngineeringOcean University of ChinaQingdaoChina
  2. 2.First Institute of OceanographyState Oceanic AdministrationQingdaoChina
  3. 3.College of PhysicsQingdao UniversityQingdaoChina

Personalised recommendations