Skip to main content

Advertisement

Log in

DNA barcode assessment of Ceramiales (Rhodophyta) in the intertidal zone of the northwestern Yellow Sea

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

A total of 142 specimens of Ceramiales (Rhodophyta) were collected each month from October 2011 to November 2012 in the intertidal zone of the northwestern Yellow Sea. These specimens covered 21 species, 14 genera, and four families. Cluster analyses show that the specimens had a high diversity for the three DNA markers, namely, partial large subunit rRNA gene (LSU), universal plastid amplicon (UPA), and partial mitochondrial cytochrome c oxidase subunit I gene (COI). No intraspecific divergence was found in our collection for these markers, except for a 1–3 bp divergence in the COI of Ceramium kondoi, Symphyocladia latiuscula, and Neosiphonia japonica. Because short DNA markers were used, the phylogenetic relationships of higher taxonomic levels were hard to evaluate with poor branch support. More than half species of our collection failed to find their matched sequences owing to shortage information of DNA barcodes for macroalgae in GenBank or BOLD (Barcode of Life Data) Systems. Three specimens were presumed as Heterosiphonia crispella by cluster analyses on DNA barcodes assisted by morphological identification, which was the first record in the investigated area, implying that it might be a cryptic or invasive species in the coastal area of northwestern Yellow Sea. In the neighbor-joining trees of all three DNA markers, Heterosiphonia japonica converged with Dasya spp. and was distant from the other Heterosiphonia spp., implying that H. japonica had affinities to the genus Dasya. The LSU and UPA markers amplified and sequenced easier than the COI marker across the Ceramiales species, but the COI had a higher ability to discriminate between species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnot D E, Roper C, Bayoumi R A L. 1993. Digital codes from hypervariable tandemly repeated DNA sequences in the Plasmodium falciparum circumsporozoite gene can genetically barcode isolates. Mol. Biochem. Parasit., 61(1): 15–24.

    Article  Google Scholar 

  • Bensasson D, Zhang D X, Hartl D L, Hewitt G M. 2001. Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends. Ecol. Evol., 16: 314–321.

    Article  Google Scholar 

  • Chase M W, Salamin N, Wilkinson M, Dunwell J M, Kesanakurthi R P, Haidar N, Savolainen V. 2005. Land plants and DNA barcodes: short-term and long-term goals. Philos. Trans. R. Soc. Lond. B Biol. Sci., 360(1462): 1 889–1 895.

    Article  Google Scholar 

  • Choi H G, Kraft G T, Lee I K, Sauders G W. 2002. Phylogenetic analyses of anatomical and nuclear SSU rDNA sequence data indicate that the Dasyaceae and Delesseriaceae (Ceramiales, Rhodophyta) are polyphyletic. Eur. J. Phycol., 37: 551–569.

    Article  Google Scholar 

  • Choi H G. 2001. Morphology and reproduction of Heterosiphonia pulchra and H. japonica (Ceramiales, Rhodophyta). Algae, 16: 387–409.

    Google Scholar 

  • Clarkston B E, Saunders G W. 2010. A comparison of two DNA barcode markers for species discrimination in the red algal family Kallymeniaceae (Gigartinales, Florideophyceae), with a description of Euthora timburtonii sp. nov. Botany, 88: 119–131.

    Article  Google Scholar 

  • Conklin K Y, Kurihara A, Sherwood A R. 2009. A molecular method for identification of the morphologically plastic invasive algal species Eucheuma denticulatum and Kappaphycus spp. (Rhodophyta, Gigartinales) in Hawaii. J. Appl. Phycol., 21: 691–699.

    Article  Google Scholar 

  • David W, Medha B. 2007. Chapter 9: BLAST QuickStart. In: Nicholas B H ed. Comparative Genomics Volumes 1 and 2. Methods in Molecular Biology. Humana Press, Totowa, New Jersey, USA. p.395–396.

    Google Scholar 

  • De Jong Y S D M, Vanderwurff A W G, Stam W T, Olsen J L. 1998. Studies on Dasyaceae 3. Towards a phylogeny of the Dasyaceae (Ceramiales, Rhodophyta) based on comparative rbcL gene sequences and morphology. Eur. J. Phycol., 33: 187–201.

    Article  Google Scholar 

  • Evans K M, Wortley A H, Mann D G. 2007. An assessment of potential diatom “Barcode” Genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist., 158: 349–364.

    Article  Google Scholar 

  • Fu J P, Zeng X Q, Wang C Y. 2009. Study on community of benthic macroalgae in the rocky intertidal zone of Qingdao. J. Ocean Univ. China, 39(Sup.): 25–31. (in Chinese with English abstract)

    Google Scholar 

  • Guiry M D, Guiry G M. 2014. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. Accessed on 2014-07-10.

    Google Scholar 

  • Guiry M D. 2001. Macroalgae of Rhodophycota, Phaeophycota, Chlorophycota, and two genera of Xanthophycota, In: Costello M J ed. European Register of Marine Species: A Check-list of the Marine Species in Europe and A Bibliography of Guides to Their Identification. Collection Patrimoines Naturels, 50: 20–38.

    Google Scholar 

  • Hajibabaei M, Janzen D H, Burns J M, Hallwachs W, Hebert P D N. 2006. DNA barcodes distinguish species of tropical Lepidoptera. P. Natl. A Sci. India A, 103: 968–971.

    Article  Google Scholar 

  • Hall J D, Fučíková K L O C, Lewis L A, Karol K G. 2010. An assessment of proposed DNA barcodes in freshwater green algae. Cryptogamie Algol., 31(4): 529–555.

    Google Scholar 

  • Harris J D. 2003. Can you bank on GenBank? Trends. Ecol. Evol., 18: 317–319.

    Article  Google Scholar 

  • Hebert P D N, Cywinska A, Ball S L, deWaard J R. 2003a. Biological identifications through DNA barcodes. P. Roy. Soc. B-Biol. Sci., 270: 313–322.

    Article  Google Scholar 

  • Hebert P D N, Ratnasingham S, deWaard J R. 2003b. Barcoding animal life: cytochrome c oxidase subunit I divergences among closely related species. P. Roy. Soc. B-Biol. Sci., 270: S96–S99.

    Article  Google Scholar 

  • Hebert P D N, Stoeckle M Y, Zemlak T S, Francis C M. 2004. Identification of birds through DNA barcodes. PloS Biol., 2: 1 657–1 663.

    Article  Google Scholar 

  • Hollingsworth P M, Forrest L L, Spouge J L. 2009. A DNA barcode for land plants. P. Natl. Acad. Sci. USA., 106(31): 12 794–12 797.

    Article  Google Scholar 

  • Kim M S, Yang M Y, Cho G Y. 2010. Applying DNA barcoding to Korean Gracilariaceae (Rhodophyta). Cryptogamie Algol., 31(4): 387–401.

    Google Scholar 

  • Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16: 111–120.

    Article  Google Scholar 

  • Le Gall L, Saunders G W. 2010. DNA barcoding is a powerful tool to uncover algal diversity: a case study of the Phyllophoraceae (Gigartinales, Rhodophyta) in the Canadian flora. J. Phycol., 46: 374–389.

    Article  Google Scholar 

  • Lee S R, Oak J H, Suh Y, Lee I K. 2001. Phylogenetic utility of rbc S sequences: an example from Antithamnion and related genera (Ceramiaceae, Rhodophyta). J. Phycol., 37(6): 1 083–1 090.

    Article  Google Scholar 

  • Lin S M, Fredericq S, Hommersand M H. 2001. Systematics of the Delesseriaceae (Ceramiales, Rhodophyta) based on large subunit rDNA and rbcL sequences, including the Phycodryoideae, subfam. nov. J. Phycol., 37(5): 881–899.

    Article  Google Scholar 

  • Liu D Y, Wang Z Y, Sun J, Huang Z Y, Qian S B. 1999. Study of the benthic algae in the littoral of Qingdao coast. Trans. Oceanol. Limnol., 3: 35–40. (in Chinese)

    Google Scholar 

  • Maggs C A, Verbruggen H, De Clerck O. 2007. 6 Molecular systematics of red algae: building future structures on firm foundations. In: Brodie J ed. Unravelling the Algae: the Past, Present, and Future of Algal Systematics, The Systematics Association Special Volume Series, 75. CRC Press: Boca Raton. p.103–121.

    Chapter  Google Scholar 

  • Moritz C, Cicero C. 2004. DNA barcoding: promise and pitfalls. PloS Biol., 2: 1 529–1 531.

    Article  Google Scholar 

  • Presting G G. 2006. Identification of conserved regions in the plastid genome implications for DNA barcoding and biological function. Can. J. Bot., 84: 1 434–1 443.

    Article  Google Scholar 

  • Robba L, Russell S, Baker G, Brodie J. 2006. Assessing the use of the mitochondrial COX I marker for use in DNA barcoding of red algae (Rhodophyta). Am. J. Bot., 93(8): 1 101–1 108.

    Article  Google Scholar 

  • Rueness J. 2010. DNA barcoding of select freshwater and marine red algae (Rhodophyta). Cryptogamie Algol., 31(4): 377–386.

    Google Scholar 

  • Saunders G W, Hommersand M H. 2004. Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. Am. J. Bot., 91: 1 494–1 507.

    Article  Google Scholar 

  • Saunders G W, Kucera H. 2010. An evaluation of rbcL, tufA, UPA, LSU and ITS as DNA barcode markers for the marine green macroalgae. Cryptogamie Algol., 31(4): 487–528.

    Google Scholar 

  • Saunders G W. 2005. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future application. Philos. T rans. R. Soc. Lond. B Biol. Sci., 360: 1 879–1 888.

    Article  Google Scholar 

  • Saunders G W. 2008. A DNA barcode examination of the red algal family Dumontiaceae in Canadian waters reveals substantial cryptic species diversity. 1. The foliose Dilsea-Neodilsea complex and Weeksia. Bot., 86: 773–789.

    Article  Google Scholar 

  • Saunders G W. 2009. Routine DNA barcoding of Canadian Gracilariales (Rhodophyta) reveals the invasive species Gracilaria vermiculophylla in British Columbia. Mol. Ecol. Res., 9: 140–150.

    Article  Google Scholar 

  • Schindel D E, Miller S E. 2005. DNA barcoding a useful tool for taxonomists. Nature, 435: 17.

    Article  Google Scholar 

  • Sherwood A R, Chan Y, Presting G G. 2008. Application of universal plastid primers to environmental sampling of a Hawaiian stream periphyton community. Mol. Ecol. Resour., 8: 1 011–1 014.

    Article  Google Scholar 

  • Sherwood A R, Kurihara A, Conklin K Y, Sauvage T, Presting G G. 2010b. The Hawaiian Rhodophyta Biodiversity Survey (2006–2010): a summary of principal findings. BMC Plant Biol., 258(10): 1 471–2 229.

    Google Scholar 

  • Sherwood A R, Kurihara A, Conklin K Y. 2011. Molecular diversity of Amansieae (Ceramiales, Rhodophyta) from the Hawaiian Islands: a multi-marker assessment reveals high diversity within Amansia glomerata. Phycol. Res., 59: 16–23.

    Article  Google Scholar 

  • Sherwood A R, Presting G G. 2007. Universal primers amplify a 23 S rDNA plastid marker in eukaryotic algae and cyanobacteria. J. Phycol., 43: 605–608.

    Article  Google Scholar 

  • Sherwood A R, Sauvage T, Kurihara A, Conklin K Y, Presting G G. 2010a. A comparative analysis of COI, LSU and UPA marker data for the Hawaiian florideophyte Rhodophyta: implications for DNA barcoding of red algae. Cryptogamie Algol., 15: 451–465.

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar M S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24: 1 596–1 599.

    Article  Google Scholar 

  • Thompson J D, Higgins D G, Gibson T J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignments through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4 673–4 680.

    Article  Google Scholar 

  • Tseng C K, Xia B M, Zhou X T. 2009. Seaweeds in Yellow Sea and the Bohai Sea of China. Science Press, Beijing, China. 254p. (in Chinese)

    Google Scholar 

  • Tseng C K. 1984. Common Seaweeds of China. Science Press, Beijing, China. 314p.

    Google Scholar 

  • Vijayan K, Taou C. 2010. DNA barcoding in plants: taxonomy in a new perspective. Curr. Sci. India, 99(11): 1 530–1 541.

    Google Scholar 

  • Vilgalys R. 2003. Taxonomic misidentification in public DNA databases. New Phytol., 160: 4–5.

    Article  Google Scholar 

  • Witt J D S, Therloff D L, Hebert P D N. 2006. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Mol. Ecol., 15: 3 073–3 082.

    Article  Google Scholar 

  • Xia B M. 2011. Chinese Seaweed: Rhodophyta. 2(7). Science Press, Beijing, China. p.212. (in Chinese)

    Google Scholar 

  • Xiao J H, Xiao H, Huang D W. 2004. DNA barcoding; new approach of biological taxonomy. Curr. Zool., 50(5): 852–855.

    Google Scholar 

  • Yancy H F, Zemlak T S, Mason J A, Washington J D, Tenge B J, Nguyen N L T, Barnett J D, Savary W E, Hill W E, Moore M M, Fry F S, Randolph S C, Rogers P L, Hebert P D N. 2008. Potential use of DNA barcodes in regulatory science: applications of the regulatory fish encyclopedia. J. Food Protect., 71: 210–217.

    Google Scholar 

  • Yoo H S, Eah J Y, Kim J S, Kim Y J, Min M S, Paek W K, Lee H, Kim C B. 2006. DNA barcoding Korean birds. Mol. Cells, 22: 323–327.

    Google Scholar 

  • Zhao X B, Peng S J, Shan T F, Liu F. 2012. Applications of three DNA barcodes in assorting intertidal red macroalgal flora in Qingdao, China. J. Ocean Univ. China, 12: 139–145.

    Article  Google Scholar 

  • Zheng B L. 2001. Chinese Seaweed: Rhodophyta. Vol. 2(6). Science Press, Beijing, China. p.159. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxiang Mao  (茅云翔).

Additional information

Supported by the Public Science and Technology Research Funds Projects of Ocean (Nos. 201105021, 201305030) and the National Natural Science Foundation of China (No. 41276137)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, G., Wu, F., Guo, H. et al. DNA barcode assessment of Ceramiales (Rhodophyta) in the intertidal zone of the northwestern Yellow Sea. Chin. J. Ocean. Limnol. 33, 685–695 (2015). https://doi.org/10.1007/s00343-015-4088-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4088-8

Keyword

Navigation