Skip to main content
Log in

Cloning, tissue distribution and effects of fasting on pituitary adenylate cyclase-activating polypeptide in largemouth bass

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Pituitary adenylate cyclase activating polypeptide (PACAP) has a wide range of biological functions. We cloned the full-length cDNAs encoding PACAP and PACAP-related peptide (PRP) from the brain of largemouth bass (Micropterus salmoides) and used real-time quantitative PCR to detect PRP-PACAP mRNA expression. The PRP-PACAP cDNA has two variants expressed via alternative splicing: a long form, which encodes both PRP and PACAP, and a short form, which encodes only PACAP. Sequence analysis results are consistent with a higher conservation of PACAP than PRP peptide sequences. The expression of PACAP-long and PACAP-short transcripts was highest in the forebrain, followed by the medulla, midbrain, pituitary, stomach, cerebellum, intestine, and kidney; however, these transcripts were either absent or were weakly expressed in the muscle, spleen, gill, heart, fatty tissue, and liver. The level of PACAP-short transcript expression was significantly higher than expression of the long transcript in the forebrain, cerebella, pituitary and intestine, but lower than that of the long transcript in the stomach. PACAP-long and PACAP-short transcripts were first detected at the blastula stage of embryogenesis, and the level of expression increased markedly between the muscular contraction stage and 3 d post hatch (dph). The expression of PACAP-long and PACAP-short transcripts decreased significantly in the brain following 4 d fasting compared with the control diet group. The down-regulation effect was enhanced as fasting continued. Conversely, expression levels increased significantly after 3 d of re-feeding. Our results suggest that PRP-PACAP acts as an important factor in appetite regulation in largemouth bass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai J, Li S, Deng G, Xie J. 2009. Status of aquaculture and breeding technology of largemouth bass in China. Scientific Fish Farming, (6): 15–16. (in Chinese)

    Google Scholar 

  • Bai J, Lutz-Carrillo D J, Quan Y, Liang S. 2008. Taxonomic status and genetic diversity of cultured largemouth bass Micro pterus salmoides in China. Aquaculture, 278(1–4): 27–30.

    Article  Google Scholar 

  • Cardoso J C R, Vieira F A, Gomes A S, Power D M. 2007. PACAP, VIP and their receptors in the metazoa: insights about the origin and evolution of the ligand-receptor pair. Peptides, 28(9): 1 902–1 919.

    Article  Google Scholar 

  • Carpio Y, Lugo J M, León K, Morales R, Estrada M P. 2008. Novel function of recombinant pituitary adenylate cyclase-activating polypeptide as stimulator of innate immunity in African catfish (Clarias gariepinus) fry. Fish Shellfish Immun., 25(4): 439–445.

    Article  Google Scholar 

  • Chance W T, Thompson H, Thomas I, Fischer J E. 1995. Anorectic and neurochemical effects of pituitary adenylate cyclase activating polypeptide in rats. Peptides, 16(8): 1 511–1 516.

    Article  Google Scholar 

  • Chua Jr S C, Brown A W, Kim J, Hennessey K L, Leibel R L, Hirsch J. 1991. Food deprivation and hypothalamic neuropeptide gene expression: effects of strain background and the diabetes mutation. Mol. Brain Res., 11(3): 291–299.

    Article  Google Scholar 

  • Enes P, Panserat S, Kaushik S, Oliva-Teles A. 2009. Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiol. Biochem., 35(3): 519–539.

    Article  Google Scholar 

  • Holmberg A, Schwerte T, Pelster B, Holmgren S. 2004. Ontogeny of the gut motility control system in zebrafish Danio rerio embryos and larvae. J. Exp. Biol., 207(23): 4 085–4 094.

    Article  Google Scholar 

  • Ji X S, Chen S L, Jiang Y L, Xu T J, Yang J F, Tian Y S. 2011. Growth differences and differential expression analysis of pituitary adenylate cyclase activating polypeptide (PACAP) and growth hormone-releasing hormone (GHRH) between the sexes in half-smooth tongue sole Cynoglossus semilaevis. Gen. Comp. Endocr., 170(1): 99–109.

    Article  Google Scholar 

  • Jiang Y, Li W S, Xie J, Lin H R. 2003. Sequence and expression of a cDNA encoding both pituitary adenylate cyclase activating polypeptide and growth hormone-releasing hormone in grouper (Epinephelus coioides). Acta Biochimica et Biophysica Sinica, 35(9): 864–872.

    Google Scholar 

  • Jozsa R, Nemeth J, Tamas A, Hollosy T, Lubics A, Jakab B, Olah A, Lengvari I, Arimura A, Reglödi D. 2006. Shortterm fasting differentially alters PACAP and VIP levels in the brains of rat and chicken. Ann. NY Acad. Sci., 1070(1): 354–358.

    Article  Google Scholar 

  • Kassahn K S, Dang V T, Wilkins S J, Perkins A C, Ragan M A. 2009. Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates. Genome Res., 19(8): 1 404–1 418.

    Article  Google Scholar 

  • Krueckl S L, Sherwood N M. 2001. Developmental expression, alternative splicing and gene copy number for the pituitary adenylate cyclase-activating polypeptide (PACAP) and growth hormone-releasing hormone (GRF) gene in rainbow trout. Mol. Cell. Endocrinol., 182(1): 99–108.

    Article  Google Scholar 

  • Lee L T O, Siu F K Y, Tam J K V, Lau I T Y, Wong A O L, Lin M, Vaudry H, Chow B K C. 2007. Discovery of growth hormone-releasing hormones and receptors in nonmammalian vertebrates. P. Natl. Acad. Sci. USA, 104(7): 2 133.

    Article  Google Scholar 

  • Lee L, Tam J, Chan D W, Chow B. 2009. Molecular cloning and mRNA distribution of pituitary adenylate cyclaseactivating polypeptide (PACAP)/PACAP-related peptide in the lungfish. Ann. Ny Acad. Sci., 1163(1): 209–214.

    Article  Google Scholar 

  • Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods, 25(4): 402–408.

    Article  Google Scholar 

  • Lu G, Moriyama E N. 2004. Vector NTI, a balanced all-in-one sequence analysis suite. Brief Bioinfor., 5(4): 378–388.

    Article  Google Scholar 

  • Lugo J M, Oliva A, Morales A, Reyes O, Garay H E, Herrera F, Cabrales A, Pérez E, Estrada M P. 2010. The biological role of pituitary adenylate cyclase-activating polypeptide (PACAP) in growth and feeding behavior in juvenile fish. J. Pept. Sci., 16(11): 633–643.

    Article  Google Scholar 

  • Maria Lugo J, Tafalla C, Leceta J, Gomariz R P, Estrada M P. 2011. Differential expression pattern of pituitary adenylate cyclase-activating polypeptide (PACAP) alternative splicing variants and its receptors in the immune system of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immun., 30(2): 734–738.

    Article  Google Scholar 

  • Matsuda K, Azuma M, Maruyama K, Shioda S. 2013. Neuroendocrine control of feeding behavior and psychomotor activity by pituitary adenylate cyclaseactivating polypeptide (PACAP) in vertebrates. Obes. Res. Clin. Pract., 7(1): e1–e7.

    Article  Google Scholar 

  • Matsuda K, Kashimoto K, Higuchi T, Yoshida T, Uchiyama M, Shioda S, Arimura A, Okamura T. 2000. Presence of pituitary adenylate cyclase-activating polypeptide (PACAP) and its relaxant activity in the rectum of a teleost, the stargazer, Uranoscopus japonicus. Peptides, 21(6): 821–827.

    Article  Google Scholar 

  • Matsuda K, Maruyama K, Miura T, Uchiyama M, Shioda S. 2005a. Anorexigenic action of pituitary adenylate cyclaseactivating polypeptide (PACAP) in the goldfish: feeding-induced changes in the expression of mRNAs for PACAP and its receptors in the brain, and locomotor response to central injection. Neurosci. Lett., 386(1): 9–13.

    Article  Google Scholar 

  • Matsuda K, Maruyama K, Nakamachi T, Miura T, Shioda S. 2006. Effects of pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide on food intake and locomotor activity in the goldfish, Carassius auratus. Ann. Ny Acad. Sci., 1070(1): 417–421.

    Article  Google Scholar 

  • Matsuda K, Maruyama K, Nakamachi T, Miura T, Uchiyama M, Shioda S. 2005b. Inhibitory effects of pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) on food intake in the goldfish, Carassius auratus. Peptides, 26(9): 1 611–1 616.

    Article  Google Scholar 

  • Matsuda K, Maruyama K. 2007. Regulation of feeding behavior by pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) in vertebrates. Peptides, 28(9): 1 761–1 766.

    Article  Google Scholar 

  • Miyata A, Arimura A, Dahl R R, Minamino N, Uehara A, Jiang L. 1989. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Bioph. Res. Co., 164(1): 567–574.

    Article  Google Scholar 

  • Morley J E, Horowitz M, Morley P M K, Flood J F. 1992. Pituitary adenylate cyclase activating polypeptide (PACAP) reduces food intake in mice. Peptides, 13(6): 1 133–1 135.

    Article  Google Scholar 

  • Nakata M, Yada T. 2007. PACAP in the glucose and energy homeostasis: physiological role and therapeutic potential. Curr. Pharm. Design, 13(11): 1 105–1 112.

    Article  Google Scholar 

  • Nam B, Moon J, Kim Y, Kong H J, Kim W, Kim D, Jee Y J, Lee S. 2013. Structural and functional characterization of pituitary adenylyl cyclase-activating polypeptide (PACAP)/PACAP-related peptide (PRP) and its receptor in olive flounder (Paralichthys olivaceus). Comp. Biochem. Phys. B, 164(1): 18–28.

    Article  Google Scholar 

  • Narnaware Y K, Peter R E. 2001. Effects of food deprivation and refeeding on neuropeptide Y (NPY) mRNA levels in goldfish. Comp. Biochem. Phys. B, 129(2): 633–637.

    Article  Google Scholar 

  • Ogi K, Kimura C, Onda H, Arimura A, Fujino M. 1990. Molecular cloning and characterization of cDNA for the precursor of rat pituitary adenylate cyclase activating polypeptide (PACAP). Biochem. Bioph. Res. Co., 173(3): 1 271–1 279.

    Article  Google Scholar 

  • Olsson C, Holmgren S. 2000. PACAP and nitric oxide inhibit contractions in the proximal intestine of the atlantic cod, Gadus morhua. J. Exp. Bio l., 203(3): 575–583.

    Google Scholar 

  • Panserat S, Plagnes-Juan E, Kaushik S. 2001. Nutritional regulation and tissue specificity of gene expression for proteins involved in hepatic glucose metabolism in rainbow trout (Oncorhynchus mykiss). J. Exp. Biol., 204(13): 2 351–2 360.

    Google Scholar 

  • Parker D B, Power M E, Swanson P, Rivier J, Sherwood N M. 1997. Exon skipping in the gene encoding pituitary adenylate cyclase-activating polypeptide in salmon alters the expression of two hormones that stimulate growth hormone release. Endocrinology, 138(1): 414–423.

    Google Scholar 

  • Sherwood N M, Krueckl S L, McRory J E. 2000. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr. Rev., 21(6): 619–670.

    Google Scholar 

  • Tachibana T, Saito E S, Takahashi H, Saito S, Tomonaga S, Boswell T, Furuse M. 2004. Anorexigenic effects of pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide in the chick brain are mediated by corticotrophin-releasing factor. Regul. Peptides, 120(1): 99–105.

    Article  Google Scholar 

  • Tachibana T, Tomonaga S, Oikawa D, Saito S, Takagi T, Saito E, Boswell T, Furuse M. 2003. Pituitary adenylate cyclase activating polypeptide and vasoactive intestinal peptide inhibit feeding in the chick brain by different mechanisms. Neurosci. Lett., 348(1): 25–28.

    Article  Google Scholar 

  • Tam J K V, Lee L T O, Chow B K C. 2007. PACAP-related peptide (PRP)-Molecular evolution and potential functions. Peptides, 28(9): 1 920–1 929.

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24(8): 1 596–1 599.

    Article  Google Scholar 

  • Thompson J D, Higgins D G, Gibson T J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22(22): 4 673–4 680.

    Article  Google Scholar 

  • Valassi E, Scacchi M, Cavagnini F. 2008. Neuroendocrine control of food intake. Nutr. Metab. Cardiovas., 18(2): 158–168.

    Article  Google Scholar 

  • Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow B K C, Hashimoto H, Galas L. 2009. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol. Rev., 61(3): 283–357.

    Article  Google Scholar 

  • Vaughan J M, Rivier J, Spiess J, Peng C, Chang J P, Peter R E, Vale W. 1992. Isolation and characterization of hypothalamic growth-hormone releasing factor from common carp, Cyprinus carpio. Neuroendocrinology, 56(4): 539–549.

    Article  Google Scholar 

  • Volkoff H, Xu M, MacDonald E, Hoskins L. 2009. Aspects of the hormonal regulation of appetite in fish with emphasis on goldfish, Atlantic cod and winter flounder: notes on actions and responses to nutritional, environmental and reproductive changes. Comp. Biochem. Phys. A, 153(1): 8–12.

    Article  Google Scholar 

  • Wu S, Adams B A, Fradinger E A, Sherwood N M. 2006. Role of two genes encoding PACAP in early brain development in zebrafish. Ann. Ny Acad. Sci., 1070(1): 602–621.

    Article  Google Scholar 

  • Xu M, Long L, Chen L, Qin J, Zhang L, Yu N, Li E. 2012. Cloning and differential expression pattern of pituitary adenylyl cyclase-activating polypeptide and the PACAPspecific receptor in darkbarbel catfish Pelteobagrus vachelli. Comp. Biochem. Phys. B, 161: 41–53.

    Article  Google Scholar 

  • Xu M, Volkoff H. 2009. Cloning, tissue distribution and effects of food deprivation on pituitary adenylate cyclase activating polypeptide (PACAP)/PACAP-related peptide (PRP) and preprosomatostatin 1 (PPSS 1) in Atlantic cod (Gadus morhua). Peptides, 30(4): 766–776.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Bai  (白俊杰).

Additional information

Supported by the National Natural Science Foundation of China (No. 31201985) and the National Key Technology R&D Program of China (No. 2012BAD26B03)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Han, L., Bai, J. et al. Cloning, tissue distribution and effects of fasting on pituitary adenylate cyclase-activating polypeptide in largemouth bass. Chin. J. Ocean. Limnol. 33, 328–338 (2015). https://doi.org/10.1007/s00343-015-4081-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4081-2

Keyword

Navigation