Skip to main content
Log in

Characterization of reference genes for qPCR analysis in various tissues of the Fujian oyster Crassostrea angulata

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Accurate quantification of transcripts using quantitative real-time polymerase chain reaction (qPCR) depends on the identification of reliable reference genes for normalization. This study aimed to identify and validate seven reference genes, including actin-2 (ACT-2), elongation factor 1 alpha (EF-1α), elongation factor 1 beta (EF-1β), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ubiquitin (UBQ), β-tubulin (β-TUB), and 18S ribosomal RNA, from Crassostrea angulata, a valuable marine bivalve cultured worldwide. Transcript levels of the candidate reference genes were examined using qPCR analysis and showed differential expression patterns in the mantle, gill, adductor muscle, labial palp, visceral mass, hemolymph and gonad tissues. Quantitative data were analyzed using the geNorm software to assess the expression stability of the candidate reference genes, revealing that β-TUB and UBQ were the most stable genes. The commonly used GAPDH and 18S rRNA showed low stability, making them unsuitable candidates in this system. The expression pattern of the G protein β-subunit gene () across tissue types was also examined and normalized to the expression of each or both of UBQ and β-TUB as internal controls. This revealed consistent trends with all three normalization approaches, thus validating the reliability of UBQ and β-TUB as optimal internal controls. The study provides the first validated reference genes for accurate data normalization in transcript profiling in Crassostrea angulata, which will be indispensable for further functional genomics studies in this economically valuable marine bivalve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

qPCR:

quantitative real-time transcription PCR

C t :

threshold value

E :

PCR efficiency

Q :

relative quantities

RT-PCR:

reverse transcription polymerase chain reaction

ACT-2:

actin-2

18S rRNA:

18S ribosomal RNA

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

EF-1α :

elongation factor 1 alpha

EF-1β :

elongation factor 1 beta

UBQ:

ubiquitin

β-TUB:

β-tubulin

Gβ :

G protein β-subunit gene

References

  • Andersen C L, Jensen J L, Ørntoft T F. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64(15): 5 245–5 250.

    Article  Google Scholar 

  • Araya M T, Siah A, Mateo D, Markham F, McKenna P, Johnson G, Berthe F C J. 2008. Selection and evaluation of housekeeping genes for haemocytes of soft-shell clams (Mya arenaria) challenged with Vibrio splendidus. Journal of Invertebrate Pathology, 99(3): 326–331.

    Article  Google Scholar 

  • Aursnes I A, Rishovd A L, Karlsen H E, Gjøen T. 2011. Validation of reference genes for quantitative RT-qPCR studies of gene expression in Atlantic cod (Gadus morhua L.) during temperature stress. BMC Research Notes, 4: 104.

    Article  Google Scholar 

  • Bustin S A. 2002. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 29(1): 23–29.

    Article  Google Scholar 

  • Castro L F C, Melo C, Guillot R, Mendes I, Queirós S, Lima D, Reis-Henriques M A, Santos M M. 2007. The estrogen receptor of the gastropod (Nucella lapillus): modulation following exposure to an estrogenic effluent? Aquatic Toxicology, 84(4): 465–468.

    Article  Google Scholar 

  • Chen L, Xie L P, Xiong X H, Dai Y P, Fan W M, Zhang R Q. 2005. Cloning and characterization of a novel G protein β-subunit of pearl oyster (Pinctada fucata), and its interaction sites with calmodulin. Comparative Biochemistry and Physiology Part B: Biochemistry & Molecular Biology, 142(2): 142–152.

    Article  Google Scholar 

  • Cho Y S, Lee S Y, Kim K H, Nam Y K. 2008. Differential modulations of two glyceraldehyde 3-phosphate dehydrogenase mRNAs in response to bacterial and viral challenges in a marine teleost Oplegnathus fasciatus (Perciformes). Fish & Shellfish Immunology, 25(5): 472–476.

    Article  Google Scholar 

  • Cubero-Leon E, Ciocan C M, Minier C, Rotchell J M. 2011. Reference gene selection for qPCR in mussel, Mytilus edulis, during gametogenesis and exogenous estrogen exposure. Environmental Science and Pollution Research, 19(7): 2 728–2 733.

    Article  Google Scholar 

  • Dheilly N M, Lelong C, Huvet A, Favrel P. 2011. Development of a Pacific oyster (Crassostrea gigas) 31, 918-feature microarray: identification of reference genes and tissueenriched expression patterns. BMC Genomics, 12(1): 468.

    Article  Google Scholar 

  • Dondero F, Dagnino A, Jonsson H, Caprì F, Gastaldi L, Viarengo A. 2006. Assessing the occurrence of a stress syndrome in mussels (Mytilus edulis) using a combined biomarker/gene expression approach. Aquatic Toxicology, 78(1): S13–S24.

    Article  Google Scholar 

  • Feng L Y, Yu Q, Li X, Ning X H, Wang J, Zou J J, Zhang L L, Wang S, Hu J J, Hu X L, Bao Z M. 2013. Identification of reference genes for qRT-PCR analysis in Yesso scallop Patinopecten yessoensis. PloS One, 8(9): e75609.

    Article  Google Scholar 

  • Janská A, Hodek J, Svoboda P, Zámečník J, Prášil I T, Vlasáková E, Milella L, Ovesná J. 2013. The choice of reference gene set for assessing gene expression in barley (Hordeum vulgare L.) under low temperature and drought stress. Molecular Genetics and Genomics, 288(11): 639–649.

    Article  Google Scholar 

  • Lamsam-Casalotti S, Onoda M, Papadopoulos V, Dym M. 1993. Developmental expression of GTP-binding proteins in rat testes. Journal of Reproduction and Fertility, 99(2): 487–495.

    Article  Google Scholar 

  • Leelatanawit R, Klanchui A, Uawisetwathana U, Karoonuthaisiri N. 2012. Validation of reference genes for real-time PCR of reproductive system in the black tiger shrimp. PloS One, 7(12): e52677.

    Article  Google Scholar 

  • Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ Ct method. Methods, 25(4): 402–408.

    Article  Google Scholar 

  • Llera-Herrera R, García-Gasca A, Huvet A, Ibarra A M. 2012. Identification of a tubulin-α gene specifically expressed in testis and adductor muscle during stable reference gene selection in the hermaphrodite gonad of the lion’s paw scallop Nodipecten subnodosus. Marine Genomics, 6: 33–44.

    Article  Google Scholar 

  • Mallona I, Lischewski S, Weiss J, Hause B, Egea-Cortines M. 2010. Validation of reference genes for quantitative realtime PCR during leaf and flower development in Petunia hybrida. BMC Plant Biology, 10(1): 4.

    Article  Google Scholar 

  • Morga B, Arzul I, Faury N, Renault T. 2010. Identification of genes from flat oyster Ostrea edulis as suitable housekeeping genes for quantitative real time PCR. Fish & Shellfish Immunology, 29(6): 937–945.

    Article  Google Scholar 

  • Niesters H G M. 2001. Quantitation of viral load using realtime amplification techniques. Methods, 25(4): 419–429.

    Article  Google Scholar 

  • Nygard A B, Jørgensen C B, Cirera S, Fredholm M. 2007. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Molecular Biology, 8(1): 67.

    Article  Google Scholar 

  • Olsvik P A, Lie K K, Jordal A E, Nilsen T O, Hordvik I. 2005. Evaluation of potential reference genes in real-time RTPCR studies of Atlantic salmon. BMC Molecular Biology, 6: 21.

    Article  Google Scholar 

  • PfafflM W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res., 29(9): e45.

    Article  Google Scholar 

  • Setiawan A N, Lokman P M. 2010. The use of reference gene selection programs to study the silvering transformation in a freshwater eel Anguilla australis: a cautionary tale. BMC Molecular Biology, 11(1): 75.

    Article  Google Scholar 

  • Siah A, Dohoo C, McKenna P, Delaporte M, Berthe F. 2008. Selecting a set of housekeeping genes for quantitative real-time PCR in normal and tetraploid haemocytes of soft-shell clams, Mya arenaria. Fish & Shellfish Immunology, 25(3): 202–207.

    Article  Google Scholar 

  • Ståhlberg A, Åman P, Ridell B, Mostad P, Kubista M. 2003. Quantitative real-time PCR method for detection of B-lymphocyte monoclonality by comparison of κ and λ immunoglobulin light chain expression. Clinical Chemistry, 49(1): 51–59.

    Article  Google Scholar 

  • Sternberg R M, Hotchkiss A K, Leblanc G A. 2008. The contribution of steroidal androgens and estrogens to reproductive maturation of the eastern mud snail Ilyanassa obsoleta. General and Comparative Endocrinology, 156(1): 15–26.

    Article  Google Scholar 

  • Tang R, Dodd A, Lai D, McNabb W C, Love D R. 2007. Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochimica et Biophysica Sinica, 39(5): 384–390.

    Article  Google Scholar 

  • Thellin O, ElMoualij B, Heinen E, Zorzi W. 2009. A decade of improvements in quantification of gene expression and internal standard selection. Biotechnology Advances, 27(4): 323–333.

    Article  Google Scholar 

  • Tsugama D, Liu S, Takano T. 2013. Arabidopsis heterotrimeric G protein βsubunit, AGB1, regulates brassinosteroid signalling independently of BZR1. Journal of Experimental Botany, 64(11): 3 213–3 223.

    Article  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3 (7), http://dx.doi.org/10.1186/gb-2002-3-7-research0034.

    Google Scholar 

  • Vorachek W R, Hugejiletu, Bobe G, Hall J A. 2013. Reference gene selection for quantitative PCR studies in sheep neutrophils. International Journal of Molecular Sciences, 14(6): 11 484–11 495.

    Article  Google Scholar 

  • Vu H L, Troubetzkoy S, Nguyen H H, Russell M W, Mestecky J. 2000. A method for quantification of absolute amounts of nucleic acids by (RT)-PCR and a new mathematical model for data analysis. Nucleic Acids Res., 28(7): e18.

    Article  Google Scholar 

  • Wang T, Liang Z A, Sandford A J, Xiong X Y, Yang Y Y, Ji Y L, He J Q. 2012. Selection of suitable housekeeping genes for real-time quantitative PCR in CD4+ lymphocytes from asthmatics with or without depression. PloS One, 7(10): e48367.

    Article  Google Scholar 

  • Watson A J, Katz A, Simon M I. 1994. A fifth member of the mammalian G-protein β-subunit family. expression in brain and activation of the β2 isotype of phospholipase C. The Journal of Biological Chemistry, 269: 22 150–22 156.

    Google Scholar 

  • Zhai Z C, Yao Y C, Wang Y J. 2013. Importance of suitable reference gene selection for quantitative RT-PCR during ATDC5 cells chondrocyte differentiation. PloS One, 8(5): e64786.

    Article  Google Scholar 

  • Zhang G, Zhao M M, Song C, Luo A X, Bai J F, Guo S X. 2012. Characterization of reference genes for quantitative realtime PCR analysis in various tissues of Anoectochilus roxburghii. Molecular Biology Reports, 39(5): 5 905–5 912.

    Article  Google Scholar 

  • Zhang K, Niu S F, Di D P, Shi L D, Liu D S, Cao X L, Miao H Q, Wang X B, Han C G, Yu J L, Li D W, Zhang Y L. 2013. Selection of reference genes for gene expression studies in virus-infected monocots using quantitative real-time PCR. Journal of Biotechnology, 168(1): 7–14.

    Article  Google Scholar 

  • Zhong Q W, Zhang Q Q, Wang Z G, Qi J, Chen Y J, Li S, Sun Y Y, Li C M, Lan X. 2008. Expression profiling and validation of potential reference genes during Paralichthys olivaceus embryogenesis. Marine Biotechnology, 10(3): 310–318.

    Article  Google Scholar 

  • Zhu J F, Zhang L F, Li W F, Han S Y, Yang W H, Qi L W. 2013. Reference gene selection for quantitative real-time PCR normalization in Caragana intermedia under different abiotic stress conditions. PloS One, 8(1): e53196.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caihuan Ke  (柯才焕).

Additional information

Supported by the National Natural Science Foundation of China (No. 41176113), the National Basic Research Program of China (973 Program) (No. 2010CB126403), the Changjiang Scholars Program for Innovative Research Team in Universities (No. IRT0941), and the Earmarked Fund for Modern Agro-Industry Technology Research System (No. nycytx-47)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, F., Yang, B. & Ke, C. Characterization of reference genes for qPCR analysis in various tissues of the Fujian oyster Crassostrea angulata . Chin. J. Ocean. Limnol. 33, 838–845 (2015). https://doi.org/10.1007/s00343-015-4078-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4078-x

Keyword

Navigation