Skip to main content

Advertisement

Log in

Ex situ echo sounder target strengths of ice krill Euphausia crystallorophias

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Ice krill is the keystone species in the neritic ecosystem in the Southern Ocean, where it replaces the more oceanic Antarctic krill. It is essential to understand the variation of target strength (TS in dB re 1 m2) with the different body size to accurately estimate ice krill stocks. However, there is comparatively little knowledge of the acoustic backscatter of ice krill. The TS of individual, formalin-preserved, tethered ice krill was measured in a freshwater test tank at 38, 120, and 200 kHz with a calibrated split-beam echo sounder system. Mean TS was obtained from 21 individual ice krill with a broad range of body lengths (L: 13–36 mm). The length (L, mm) to wet weight (W; mg) relationship for ice krill was W=0.001218×103 × L 3.53 (R 2 =0.96). The mean TS-to-length relationship were TS38 kHz =−177.4+57log10 (L), (R 2 = 0.86); TS120 kHz = −129.9+31.56log10 (L), (R 2 =0.87); and TS200 kHz =−117.6+24.66log10 (L), (R 2 =0.84). Empirical estimates of the relationship between the TS and body length of ice krill were established at 38, 120, and 200 kHz and compared with predictions obtained from both the linear regression model of Greene et al. (1991) and the Stochastic Distorted Wave Born Approximation (SDWBA) model. This result might be applied to improve acoustic detection and density estimation of ice krill in the Southern Ocean. Further comparative studies are needed with in situ target strength including various body lengths of ice krill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amakasu K, Furusawa M. 2006. The target strength of Antarctic krill (Euphausia superba) measured by the split-beam method in a small tank at 70 kHz. ICES J. Mar. Sci., 63: 36–45.

    Article  Google Scholar 

  • Anderson V C. 1950. Sound scattering from a fluid sphere. J. Acoust. Soc. Am., 22: 426–431.

    Article  Google Scholar 

  • Azzali M, Leonori I, Biagiotti I, De Felice A, Angiolillo M, Bottaro M, Vacchi M. 2010. Target strength studies on Antarctic silverfish (Pleuragramma antarcticum) in the Ross Sea. CCAMLR Science, 17: 75–104.

    Google Scholar 

  • Azzali M, Leonori I, De Felice A, Russo A. 2006. Spatialtemporal relationships between two euphausiid species in the Ross Sea. Chem. Ecol., 22: 219–233.

    Article  Google Scholar 

  • BioSonics. 2005. User Guide; Visual Acquisition, version 5.0. Seattle. p.64.

    Google Scholar 

  • Bottino N R. 1974. The fatty acids of Antarctic phytoplankton and Euphausiids. Fatty acid exchange among levels of the Ross Sea. Mar. Biol., 27: 197–204.

    Article  Google Scholar 

  • Bushuev S G. 1986. Feeding of Minke whales, Balaenoptera acutorostrata, in the Antarctic. Rep. Int. Whal. Commun., 36: 241–245.

    Google Scholar 

  • CCAMLR. 2007. Report of the twenty sixth meeting of the Scientific Committee. SC-CAMLR-XXVI, Commission for the Conservation of Antarctic Marine Living Resources, Hobart, Australia.

    Google Scholar 

  • Chu D, Foote K G, Stanton T K. 1993. Further analysis of target strength measurements of Antarctic krill at 38 and 120 kHz: comparison with deformed cylinder model and inference of orientation distribution. J. Acoust. Soc. Am., 93: 2 985–2 988.

    Article  Google Scholar 

  • Chu D, Wiebe P H. 2005. Measurements of sound-speed and density contrasts of zooplankton in Antarctic waters. ICES J. Mar. Sci., 62: 818–831.

    Article  Google Scholar 

  • Demer D A, Conti S G. 2005. New target-strength model indicates more krill in the Southern Ocean. ICES J. Mar. Sci., 62: 25–32.

    Article  Google Scholar 

  • Foote K G, Everson I, Watkins J L, Bone D G. 1990. Target strengths of Antarctic krill (Euphausia superba) at 38 and 120 kHz. J. Acoust. Soc. Am., 87(1): 16–24.

    Article  Google Scholar 

  • Foote K G, Knudsen H P, Vestnes G, MacLennan D N, Simmonds E J. 1987. Calibration of acoustic instruments for fish density estimation: a practical guide, cooperative research report. Int. Coun. Exp. Sea, 144: 1–69.

    Google Scholar 

  • Greene C H, Stanton T K, Wiebe P H, McClatchie S. 1991. Acoustic estimates of Antarctic krill. Nature, 349: 110.

    Article  Google Scholar 

  • Greenlaw C F. 1977. Backscattering spectra of preserved zooplankton. J. Acoust. Soc. Am., 62: 44–52.

    Article  Google Scholar 

  • Hewitt R P, Demer D A. 1991. Krill abundance. Nature, 353: 310.

    Article  Google Scholar 

  • Hewitt R P, Watkins J L, Naganobu M, Tshernyshkov P, Brierley A S, Demer D A, Kasatkina S, Takao Y, Goss C, Malyshko A, Brandon M A, Kawaguchi S, Siegel V, Trathan P N, Emery J H, Everson I, Miller D G M. 2002. Setting a precautionary catch limit for Antarctic krill. Oceanogr., 15: 26–33.

    Article  Google Scholar 

  • Hosie G W. 1994. The macrozooplankton communities in the Prydz Bay region, Antarctica. In: El-Sayed S Z ed. Southern Ocean Ecology: The BIOMASS Perspective. Cambridge Univ. Press, USA. p.93–123.

    Google Scholar 

  • Johnson R K. 1977. Sound scattering from a fluid sphere revisited. J. Acoust. Soc. Am., 61: 375–377.

    Article  Google Scholar 

  • Madureira L S P, Everson I, Murphy E J. 1993. Interpretation of acoustic data at two frequencies to discriminate between Antarctic krill (Euphausia superba Dana) and other scatterers. J. Plankton Res., 15: 787–802.

    Article  Google Scholar 

  • McGehee D E, O’Driscoll R L, Traykovski M. 1998. Effects of orientation on acoustic scattering from Antarctic krill at 120 kHz. Deep Sea Res. Part II, 45: 1 273–1 294.

    Article  Google Scholar 

  • Medwin H, Caly C S. 1998. Fundamental of Acoustical Oceanography. Academic Press. p.712.

    Google Scholar 

  • Morris D J, Watkins J L, Ricketts C, Buchholz F, Priddle J. 1988 An assessment of the merits of length and weight measurements of Antarctic krill Euphausia superba. Br. Antarct. Surv. Bull., 79: 27–50.

    Google Scholar 

  • Pakhomov E A, Perissinotto R, Froneman P W. 1998. Abundance and trophodynamics of Euphausia crystallorophias in the shelf region of the Lazarev Sea during austral spring and summer. J. Marine Syst., 17: 313–324.

    Article  Google Scholar 

  • Richter K E. 1985. Acoustic scattering at 1.2 MHz from individual zooplankters and copepod populations. Deep Sea Res., 32: 149–161.

    Article  Google Scholar 

  • Sala A, Azzali M, Russo A. 2002. Krill of the Ross Sea: distribution, abundance and demography of Euphausia superb a and Euphausia crystallorophias during the Italian Antarctic Expedition (January–February 2000). Sci. Mat., 66: 123–133.

    Google Scholar 

  • SC-CAMLR. 2005. Report of the First Meeting of the Subgroup on Acoustic Survey and Analysis Method (SGASAM). In: Report of the Twenty-fourth Meeting for the Scientific Committee (SC-CAMLR-XXIV), Annex 6. CCAMLR, Hobart, Australia. p.563–585.

    Google Scholar 

  • Smith J N, Ressler P H, Warren J D. 2010. Material properties of euphausiids and other zooplankton from the Bering Sea. J. Acoust. Soc. Am., 128: 2 664–2 680.

    Article  Google Scholar 

  • Soule M, Barange M, Solli H, Hampton I. 1997. Performance of a new phase algorithm for discriminating between single and overlapping echoes in a split-beam echo sounder. ICES J. Mar. Sci., 54: 934–938.

    Article  Google Scholar 

  • Steedman H F. 1976. General and applied data on formaldehyde fixation and preservation of marine zooplankton. In: Steedman H F ed. Zooplankton Fixation and Preservation. UNESCO Press. p.103–154.

    Google Scholar 

  • Steedman H F. 1976. Osmotic pressure in fixation and preservation. In: Steedman H F ed. Monographs on Oceanographic Methodology: 4. Zooplankton Fixation and Preservation. UNESCO Press, Paris. p.186–188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donhyug Kang.

Additional information

Supported by the Korea Polar Research Institute (No. PP14020) and the Korea Institute of Ocean Science and Technology (No. PN65250)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La, H.S., Lee, H., Kang, D. et al. Ex situ echo sounder target strengths of ice krill Euphausia crystallorophias . Chin. J. Ocean. Limnol. 33, 802–808 (2015). https://doi.org/10.1007/s00343-015-4064-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4064-3

Keyword

Navigation