Chinese Journal of Oceanology and Limnology

, Volume 33, Issue 1, pp 243–251 | Cite as

Effects of extratropical solar penetration on North Atlantic Ocean circulation and climate

Physics
  • 48 Downloads

Abstract

Effects of extratropical solar penetration on the North Atlantic Ocean circulation and climate are investigated using a coupled ocean-atmosphere model. In this model, solar penetration generates basinwide cooling and warming in summer and winter, respectively. Associated with SST changes, annual mean surface wind stress is intensified in both the subtropical and subpolar North Atlantic, which leads to acceleration of both subtropical and subpolar gyres. Owing to warming in the subtropics and significant saltiness in the subpolar region, potential density decreases (increases) in the subtropical (subpolar) North Atlantic. The north-south meridional density gradient is thereby enlarged, accelerating the Atlantic meridional overturning circulation (AMOC). In addition, solar penetration reduces stratification in the upper ocean and favors stronger vertical convection, which also contributes to acceleration of the AMOC.

Keyword

solar penetration North Atlantic Atlantic meridional overturning circulation (AMOC) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bryan K, Cox M. 1967. A numerical investigation of the oceanic general circulation. Tellus, 19: 54–80.CrossRefGoogle Scholar
  2. Denman K. 1973. A time-dependent model of the upper ocean. J. Phys. Oceanogr., 3: 173–184.CrossRefGoogle Scholar
  3. Dickey T D, Simpson J J. 1983. The influence of optical water type on the diurnal response of the upper ocean. Tellus, 35B: 142–154.CrossRefGoogle Scholar
  4. Hughes T, Weaver A. 1994. Multiple equilibrium of an asymmetric two-basin model. J. Phys. Oceanogr., 24: 619–637.CrossRefGoogle Scholar
  5. Jacob R L. 1997. Low Frequency Variability in a Simulated Atmo1sphere Ocean System. Ph.D. thesis, University of Wisconsin-Madison. 155p.Google Scholar
  6. Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S. 2007. On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys., 45: RG2001, http://dx.doi.org/ 10.1029/2004RG000166.CrossRefGoogle Scholar
  7. Liang X, Wu L. 2013. Effects of solar penetration on the annual cycle of sea surface temperature in the North Pacific. J. Geophys. Res. Oceans, 118: 2 793–2 801, http://dx.doi.org/ 10.1002/jgrc.20208.CrossRefGoogle Scholar
  8. Lin P, Liu H, Zhang X. 2007. Sensitivity of the upper ocean temperature and circulation in the Equatorial Pacific to solar radiation penetration, Adv. Atmos. Sci., 24: 765–780.CrossRefGoogle Scholar
  9. Liu H, Ma J, Lin P, Zhan H. 2012. Numerical study of the effects of ocean color on the sea surface temperature in the southeast tropical Indian Ocean: the role of the barrier layer, Environ. Res. Lett., 7: 024010, http://dx.doi.org/ 10.1088/1748-9326/7/2/024010.CrossRefGoogle Scholar
  10. Manizza M, Le Quere C, Waterson A J, Burtenhhuis E T. 2005. Biooptical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model, Geophys. Res. Lett., 32: L05603, http://dx.doi.org/ 10.1029/2004GL020778.CrossRefGoogle Scholar
  11. Manizza M, Le Quere C, Waterson A J, Burtenhhuis E T. 2008. Ocean biogeochemical response to phytoplankton-light feedback in a global model, J. Geophys. Res., 113, http://dx.doi.org/ 10.1029/2007JC004478.
  12. Martin P J. 1985. Simulation of the mixed layer at OWS November and Papa with several models. J. Geophys. Res., 90: 903–916.CrossRefGoogle Scholar
  13. Mobley C D. 1994. Light and Water. Academic Press. 592p.Google Scholar
  14. Morel A, Antoine D. 1994. Heating rate within the upper ocean in relation to its biooptical state. J. Phys. Oceanogr., 24: 1 652–1 665.CrossRefGoogle Scholar
  15. Morel A. 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (case Iwaters). J. Geophys. Res., 93: 1 652–1 665.Google Scholar
  16. Murtugudde R, Beauchamp J, McClain C R, Lewis M, Busalacchi A J. 2002. Effects of penetrative radiation on the upper tropical ocean circulation. J. Climate, 15: 470–486.CrossRefGoogle Scholar
  17. Murtugudde R, Signorini S, Christian J, Busalacchi A, McClain C, Picaut J. 1999. Ocean color variability of the tropical Indo-Pacific basin observed by SeaWiFS during 1997–98. J. Geophys. Res., 104: 18 351–18 366.CrossRefGoogle Scholar
  18. Nakamoto S, Kumar S P, Oberhuber J M, Ishizaka J, Muneyama K, Frouin R. 2001. Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model. Geophys. Res. Lett., 28: 2 021–2 024.CrossRefGoogle Scholar
  19. Ohlmann J C, Siegel D, Washburn L. 1998. Radiant heating of the western equatorial Pacific during TOGA-COARE. J. Geophys. Res., 103: 5 379–5 395.CrossRefGoogle Scholar
  20. Ohlmann J C, Siegel D. 2000. Ocean radiant heating. Part II: Parameterizing solar radiation transmission through the upper ocean. J. Phys. Oceanogr., 30: 1 849–1 865.CrossRefGoogle Scholar
  21. Park Y G. 1999. The stability of thermohaline circulation in a two-box model. J. Phys. Oceanogr., 29: 3 101–3 110.CrossRefGoogle Scholar
  22. Paulson C A, Simpson J J. 1977. Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7: 952–956.CrossRefGoogle Scholar
  23. Rochford P A, Kara A B, Wallcraft A J, Arnone R A. 2002. Importance of solar subsurface heating in ocean general circulation models. J. Geophys. Res., 106: 30 923–30 938.CrossRefGoogle Scholar
  24. Scott J, Marotzke J, Stone P. 1999. Interhemispheric thermohaline circulation in a coupled box model. J. Phys. Oceanogr., 29: 351–365.CrossRefGoogle Scholar
  25. Simonot J-Y, Dollinger E, Treut H Le. 1988. Thermodynamicalbiological-optical coupling in the ocean mixed layer. J. Geophys. Res., 93: 8 193–8 202.CrossRefGoogle Scholar
  26. Simpson J J, Dickey T D. 1981. Alternative parameterization of downward irradiance and their dynamical significance. J. Phys. Oceanogr., 11: 876–882.CrossRefGoogle Scholar
  27. Stommel H. 1961. Thermohaline convection with two stable regimes of flow. Tellus, 13: 224–230.CrossRefGoogle Scholar
  28. Stouffer R, Coauthors. 2006. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19: 1 365–1 387.CrossRefGoogle Scholar
  29. Sweeney C, Gnanadesikan A, Griffies S M, Harrison M J, Rosati A J, Samuels B L. 2005. Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J. Phys. Oceanogr., 35: 1 103–1 119.CrossRefGoogle Scholar
  30. Talley L, Reid J, Robbins P. 2003. Date-based meridional overturning streamfunction for the global ocean. J. Climate, 16: 3 213–3 226.CrossRefGoogle Scholar
  31. Thorpe R B, Gregory J M, Johns T C, Wood R A, Mitchell J F B. 2001. Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model. J. Climate, 14: 3 102–3 116.CrossRefGoogle Scholar
  32. Wang C, Dong S, Munoz E. 2010. Seawater density variations in the North Atlantic and the Atlantic meridional overturning circulation, Clim. Dyn., http://dx.doi.org/ 10.1007/s00382-009-0560-5.Google Scholar
  33. Woods J D, Barkmann W, Horch A. 1984. Solar heating of the oceans—diurnal, seasonal and meridional variation. Quart. J. Roy. Meteor. Soc., 110: 633–656.Google Scholar
  34. Wu L, Li C, Yang C, Xie S P. 2007. Global teleconnections in response to a shutdown of the Atlantic meridional overturning circulation. J. Climate, 21: 3 002–3 019.CrossRefGoogle Scholar
  35. Wu L, Liu Z. 2002. Is tropical Atlantic variability driven by the North Atlantic Oscillation? Geophys. Res. Lett., 29: 1 653, http://dx.doi.org/ 10.1029/2002GL014939.CrossRefGoogle Scholar
  36. Wu L, Liu Z. 2005. North Atlantic decadal variability: air-sea coupling, oceanic memory, and potential northern hemisphere resonance. J. Climate, 18: 331–349.CrossRefGoogle Scholar
  37. Zaneveld J R, Spinrad R W. 1980. An arc tangent model of irradiance in the sea. J. Geophys. Res., 85: 4 919–4 922.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Physical Oceanography LaboratoryOcean University of ChinaQingdaoChina

Personalised recommendations