Skip to main content

Advertisement

Log in

Do copepods inhabit hypersaline waters worldwide? A short review and discussion

  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 2016

Abstract

A small number of copepod species have adapted to an existence in the extreme habitat of hypersaline water. 13 copepod species have been recorded in the hypersaline waters of Crimea (the largest peninsula in the Black Sea with over 50 hypersaline lakes). Summarizing our own and literature data, the author concludes that the Crimean extreme environment is not an exception: copepod species dwell in hypersaline waters worldwide. There are at least 26 copepod species around the world living at salinity above 100; among them 12 species are found at salinity higher than 200. In the Crimea Cletocamptus retrogressus is found at salinity 360×10-3 (with a density of 1 320 individuals/m3) and Arctodiaptomus salinus at salinity 300×10-3 (with a density of 343 individuals/m3). Those species are probably the most halotolerant copepod species in the world. High halotolerance of osmoconforming copepods may be explained by exoosmolyte consumption, mainly with food. High tolerance to many factors in adults, availability of resting stages, and an opportunity of long-distance transportation of resting stages by birds and/or winds are responsible for the wide geographic distribution of these halophilic copepods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aladin N V, Plotnikov I S. 2008. Modern fauna of residual water bodies formed on the place of the former Aral Sea. Proc. Zool. Inst. RAS, 312 (1-2): 145–154. (in Russian)

    Google Scholar 

  • Alonso M. 1990. Anostraca, Cladocera and Copepoda of Spanish saline lakes. Hydrobiologia, 197 (1): 221–231, http://dx.doi.org/10.1007/BF00026952.

    Article  Google Scholar 

  • Alonso M. 2010. Branchiopoda and Copepoda (Crustacea) in Mongolian saline lakes. Mongolian J. Biol. Sci., 8 (1): 9–16.

    Google Scholar 

  • Amarouayache M, Derbal F, Kara M H. 2012. Note on the carcinological fauna associated with Artemia salina (Branchiopoda, Anostraca) from Sebkha Ez-Zemoul (northeast Algeria). Crustaceana, 85 (2): 129–137, http://dx.doi.org/10.1163/156854012X623728.

    Article  Google Scholar 

  • Andrew T E, Cabrera S, Montecino V. 1989. Diurnal changes in zooplankton respiration rates and the phytoplankton activity in two Chilean lakes. Hydrobiologia, 175 (2):121–135, http://dx.doi.org/10.1007/BF00765123.

    Article  Google Scholar 

  • Anufriieva E V, Holynska M, Shadrin N V. 2014. Current invasions of Asian Cyclopid species (Copepoda: Cyclopidae) in Crimea, with taxonomical and zoogeographical remarks on the hypersaline and freshwater fauna. Annales Zoologici, 64 (1): 109–130, http://dx.doi.org/10.3161/000345414X680636.

    Article  Google Scholar 

  • Anufriieva E V, Shadrin N V. 2012. Crustacean diversity in hypersaline Chersonessus Lake (Crimea). Opt. Protect. Ecosyst., 7: 55–61. (in Russian)

    Google Scholar 

  • Anufriieva E V, Shadrin N V. 2014a. Arctodiaptomus salinus (Daday 1885. (Calanoida, Copepoda) in saline water bodies of the Crimea. Morskoi Ecologicheskii Zhurnal, 13 (3): 5–11. (in Russian)

    Google Scholar 

  • Anufriieva E V, Shadrin N V. 2014b. Resting stages of crustaceans in the Crimean hypersaline lakes (Ukraine) and their ecological role. Acta Geol. Sin., 88 (Suppl. 1): 46–49, http://dx.doi.org/10.1111/1755-6724.12266_3.

    Article  Google Scholar 

  • Anufriieva E V. 2014. Free-living Cyclopidae (Copepoda, Cyclopoida) in saline and hypersaline water bodies of the Crimea: new findings. Morskoi Ecologicheskii Zhurnal, 13 (2): 24–30. (in Russian)

    Google Scholar 

  • Balushkina E V, Golubkov S M, Golubkov M S, Litvinchuk L F, Shadrin N V. 2009. Effect of abiotic and biotic factors on the structural and functional organization of the saline lake ecosystems. Zhurnal Obshchei Biologii, 70 (6):504–514. (in Russian)

    Google Scholar 

  • Bayly I A E, Boxshall G A. 2009. An all-conquering ecological journey: from the sea, calanoid copepods mastered brackish, fresh, and athalassic saline waters. Hydrobiologia, 630 (1): 39–47, http://dx.doi.org/10.007/s10750-009-9797-6.

    Article  Google Scholar 

  • Bayly I A E. 1967. The fauna and chemical composition of some athalassic saline waters in New Zealand. New Zealand J. Mar. Freshw. Res., 1 (2): 105–117, http://dx.doi.org/10.1080/00288330.1967.9515197.

    Article  Google Scholar 

  • Bayly I A E. 1970. Further studies on some saline lakes of south-east Australia. Austr. J. Mar. Freshw. Res., 21 (2): 117–130.

    Article  Google Scholar 

  • Bayly I A E. 1972. Salinity tolerance and osmotic behavior of animals in athalassic saline and marine hypersaline waters. Ann. Rev. Ecol. Syst., 3 (1): 233–268, http://www. jstor.org/stable/2096848.

    Article  Google Scholar 

  • Beadle L C. 1943. An ecological survey of some inland saline waters of Algeria. J. Linnean Soc. London Zool., 41 (278): 218–242, http://dx.doi.org/10.1111/j.1096-3642.1943.tb01698.x.

    Article  Google Scholar 

  • Belmonte G, Moscatello S, Batogova E A, Pavlovskaya T, Shadrin N V, Litvinchuk L F. 2012. Fauna of hypersaline lakes of the Crimea (Ukraine). Thalassia Salentina, 34: 11–24, http://dx.doi.org/10.1285/i15910725v34p11.

    Google Scholar 

  • Ben-Amotz A, Sussman I, Avron M. 1982. Glycerol production by Dunaliella. Experientia, 38 (1): 49–52, http://dx.doi.org/10.1007/BF01944527.

    Article  Google Scholar 

  • Boxshall G. 2009. Freshwater Animal Diversity Assessment (FADA) Project. Crustacea-Copepoda checklist. http://fada.biodiversity.be/CheckLists/Crustacea-Copepoda.pdf.

    Google Scholar 

  • Britton R H, Johnson A R. 1987. An ecological account of a Mediterranean salina: the Salin de Giraud, Camargue (S. France). Biol. Conserv., 42 (3): 185–230, http://dx.doi. org/10.1016/0006-3207(87)90133-9.

    Article  Google Scholar 

  • Brucet S, Boix D, Gascón S, Sala J, Quintana X D, Badosa A, Søndergaard M, Lauridsen T L, Jeppesen E. 2009. Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography, 32 (4): 692–702, http://dx.doi.org/10.1111/j.1600-0587.2009.05823.x.

    Article  Google Scholar 

  • Burton R S. 1991. Regulation of proline synthesis during osmotic stress in the copepod Tigriopus californicus. J. Exp. Zool., 259 (2): 166–173, http://dx.doi.org/10.1002/jez.1402590204.

    Article  Google Scholar 

  • Carrasco N K, Perissinotto R. 2012. Development of a halotolerant community in the St. Lucia Estuary (South Africa) during a hypersaline phase. PloS One, 7 (1): e29927, http://dx.doi.org/10.1371/journal.pone.0029927.

    Article  Google Scholar 

  • Chen H, Jiang J G. 2009. Osmotic responses of Dunaliella to the changes of salinity. J. Cell. Physiol., 219 (2): 251–258, http://dx.doi.org/10.1002/jcp.21715.

    Article  Google Scholar 

  • De Miranda M A, Durante L, Serra E. 2000. Zoocenoses dans les bassins de premiére evaporation dans une saline de la Sardaigne. Mediterránea: Serie de Estudios Biológicos, Época II, 17: 45–50, http://hdl.handle.net/10045/6546.

    Google Scholar 

  • De Vooys C G N, Geenevasen J A J. 2002. Biosynthesis and role in osmoregulation of glycine-betaine in the Mediterranean mussel Mytilus galloprovincialis LMK. Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 132 (2): 409–414, http://dx.doi.org/10.1016/S1096-4959(02)00052-0.

    Article  Google Scholar 

  • Dumont H J, Decraemer W. 1977. On the continental copepod fauna of Morocco. Hydrobiologia, 52 (2-3): 257–278, http://dx.doi.org/10.1007/BF00036451.

    Article  Google Scholar 

  • Dussart B H, Defaye D. 2006. World directory of Crustacea Copepoda of inland waters II-Cyclopiformes. Backhuys Publisher, Leiden. 354p.

    Google Scholar 

  • Fenchel T. 1988. Marine plankton food chains. Ann. Rev. Ecol. Syst., 19 (1): 19–38, http://www.jstor.org/stable/2097146.

    Article  Google Scholar 

  • Frangoulis C, Christou E D, Hecq J H. 2004. Comparison of marine copepod outfluxes: nature, rate, fate and role in the carbon and nitrogen cycles. Adv. Mar. Biol., 47: 253–309, http://dx.doi.org/10.1016/S0065-2881(04)47004-7.

    Article  Google Scholar 

  • Frisch D, Green A J, Figuerola J. 2007. High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds. Aquat. Sci., 69 (4): 568–574, http://dx.doi.org/10.1007/s00027-007-0915-0.

    Article  Google Scholar 

  • Geddes N C. 1976. Seasonal fauna of some ephemeral saline waters in westren Victoria with particular reference to Parartemia zietziana Sayce (Crustacea: Anostraca). Aust. J. Mar. Freshw. Res., 27 (1): 1–22, http://dx.doi.org/10. 1071/MF9760001.

    Article  Google Scholar 

  • Ginatullina E N, Khodjaeva G. 2012. Zooplankton of small drainage lakes in lower part of Amudaria under increasing salinity. Scientific Information Center of ICWC, Almaty, Kazakhstan. p.173–175. (in Russian)

    Google Scholar 

  • Goolish E M, Burton R S. 1989. Energetics of osmoregulation in an intertidal copepod: effects of anoxia and lipid reserves on the pattern of free amino accumulation. Funct. Ecol., 3 (1): 81–89, http://www.jstor.org/stable/2389678.

    Article  Google Scholar 

  • Grant W D. 2004. Life at low water activity. Phil. Trans. R. Soc. London B: Biol. Sci., 359 (1448): 1249–1267, http://dx.doi.org/10.1098/rstb.2004.1502.

    Article  Google Scholar 

  • Gurney R. 1933. British Freshwater Copepoda, 3. The Ray Society, London. 384p.

    Google Scholar 

  • Hammer U T, Hurlbert S H. 1992. Is the absence of Artemia determined by the presence of predators or by lower salinity in some saline waters? In: Roberts R D, Bothwell M L eds. Aquatic Ecosystems in Semi-Arid Regions: Implications for Resource Management. Nat. Hydrol. Res. Inst. Symposium Series 7, Environment Canada, Saskatoon. p.91–102.

    Google Scholar 

  • Hammer U T. 1986. Saline Lake Ecosystems of the World. Springer, Dordrecht. 616p.

    Google Scholar 

  • Hammer U T. 1993. Zooplankton distribution and abundance in saline lakes of Alberta and Saskatchewan, Canada. Int. J. Salt Lake Res., 2 (2): 111–132, http://dx.doi.org/10.1007/BF02905904.

    Article  Google Scholar 

  • He Z H, Qin J G, Wang H Q, Wang Z Y, Xia X. 1989. Studies on the saline and hypersaline zooplanktons from Jinnan and Yinchuan regions. Acta Hydrobiol. Sin., 13 (1): 24–37. (in Chinese with English abstract)

    Google Scholar 

  • Imhoff J F. 1986. Survival strategies of microorganisms in extreme saline environments. A dv. S pace Res., 6 (12):299–306, http://dx.doi.org/10.1016/0273-1177(86)90098-0.

    Google Scholar 

  • Jones D A, Price A R G, Hughs R N. 1978. Ecology of the high saline lagoons Dawhat as Sayh, Arabian Gulf, Saudi Arabia. Estuar. Coast. Mar. Sci., 6 (3): 253–262, http://dx.doi.org/10.1016/0302-3524(78)90014-2.

    Article  Google Scholar 

  • Khlebovich V V, Aladin N V. 2010. The salinity factor in animal life. Herald Russ. Acad. Sci., 80 (3): 299–304, http://dx.doi.org/10.1134/S1019331610030172.

    Article  Google Scholar 

  • Kolesnikova E A, Mazlumyan S A, Shadrin N V. 2008). Seasonal dynamics of meiobenthos fauna from a salt lake of the Crimea. In: The Firth International Conference of Environmental Micropaleontology, Microbiology and Meiobenthology (EMMM). Chennai, India. p.155–158.

  • Krupa E G. 2010. Zooplankton Structure of Different Ecological Type’S Waterbodies and Rivers of Kazakhstan. Dr. Sc. Thesis, Institute of Zoology, Almaty, Kazakhstan. 200p. (in Russian)

    Google Scholar 

  • Lindley L C, Phelps R P, Davis D A, Cummins K A. 2011. Salinity acclimation and free amino acid enrichment of copepod nauplii for first-feeding of larval marine fish. Aquaculture, 318 (3-4): 402–406, http://dx.doi.org/10. 1016/j.aquaculture.2011.05.050.

    Article  Google Scholar 

  • Litvinenko L I, Litvinenko A I, Boiko E G. 2009. Brine shrimp Artemia in Western Siberia Lakes. Nauka, Novosibirsk. 304p. (in Russian)

    Google Scholar 

  • Mageed A A A. 1998. Distribution and salinity ranges of zooplankton organisms at El-Fayoum depression (El- Fayoum-Egypt). Egypt. J. Aquat. Biol. Fish., 2: 51–71.

    Google Scholar 

  • Mageed A A A. 2006. Spatio-temporal variations of zooplankton community in the hypersaline lagoon of Bardawil, North Sinai, Egypt. Egypt. J. Aquat. Res., 32 (1): 168–183, http://hdl.handle.net/1834/1456.

    Google Scholar 

  • Marten G G, Nguyen M, Ngo G. 2000. Copepod predation on Anopheles quadrimaculatus larvae in rice fields. J. Vector Ecol., 25 (1): 1–6.

    Google Scholar 

  • Monchenko V I. 2003. Free-Living Cyclopoid Copepods of Ponto-Caspian Basin. Naukova Dumka, Kyiv. 350p. (in Russian)

    Google Scholar 

  • Moore J E. 1952. The Entomostraca of southern Saskatchewan. Canad. J. Zool., 30 (6): 410–450, http://dx.doi.org/10.1139/z52-036.

    Article  Google Scholar 

  • Moscatello S, Belmonte G. 2009. Egg banks in hypersaline lakes of the South-East Europe. Sal. Syst., 5 (1): 3, http://dx.doi.org/10.1186/1746-1448-5-3.

    Article  Google Scholar 

  • Oren A. 2011. Thermodynamic limits to microbial life at high salt concentrations. Environ. Microbiol., 13 (8): 1908–1923, http://dx.doi.org/10.1111/j.1462-2920.2010.02365.x.

    Article  Google Scholar 

  • Patrick M L, Bradley T J. 2000. Regulation of compatible solute accumulation in larvae of the mosquito Culex tarsalis: osmolarity versus salinity. J. Exp. Biol., 203: 831–839.

    Google Scholar 

  • Pierce S K, Edwards S C, Mazzocchi P H, Klingler L J, Warren M K. 1984. Proline betaine: a unique osmolyte in an extremely euryhaline osmoconformer. Biol. Bull., 167 (2): 495–500.

    Article  Google Scholar 

  • Pinder A M, Halse S A, McRae J M, Shiel R J. 2005. Occurrence of aquatic invertebrates of the wheatbelt region of Western Australia in relation to salinity. Hydrobiologia, 543 (1): 1–24, http://dx.doi.org/10.1007/s10750-004-5712-3.

    Article  Google Scholar 

  • Por F D. 1980. A classification of hypersaline waters, based on trophic criteria. Mar. Ecol., 1 (2): 121–131, http://dx.doi. org/10.1111/j.1439-0485.1980.tb00214.x.

    Article  Google Scholar 

  • Radzikowski J. 2013. Resistance of dormant stages of planktonic invertebrates to adverse environmental conditions. J. Plankton Res., 35 (4): 707–723, http://dx. doi.org/10.1093/plankt/fbt032.

    Article  Google Scholar 

  • Ramdani M, Elkhiati N, Flower R J, Birks H H, Kraïem M M, Fathi A A, Patrick S T. 2001. Open water zooplankton communities in North African wetland lakes: the CASSARINA project. Aquat. Ecol., 35 (3-4): 319–333, http://dx.doi.org/10.1023/A:1011926310469.

    Article  Google Scholar 

  • Reid J W, Reed E B. 1994. First records of two Neotropical species of Mesocyclops (Copepoda) from Yukon Territory: Cases of passive dispersal? Arctic, 47 (1): 80–87, http://www.jstor.org/stable/40511533.

    Article  Google Scholar 

  • Rokneddine A, Chentoufi M. 2004. Study of salinity and temperature tolerance limits regarding four crustacean species in a temporary salt water swamp (Lake Zima, Morocco). Animal Biol., 54 (3): 237–253, http://dx.doi. org/10.1163/1570756042484719.

    Article  Google Scholar 

  • Samraoui B. 2002. Branchiopoda (Ctenopoda and Anomopoda) and Copepoda from eastern Numidia, Algeria. Hydrobiologia, 470 (1-3): 173–179, http://dx.doi.org/10.1023/A:1015640525662.

    Article  Google Scholar 

  • Seibel B A, Walsh P J. 2002. Trimethylamine oxide accumulation in marine animals: relationship to acylglycerol storage. J. Exp. Biol., 205 (3): 297–306.

    Google Scholar 

  • Semenova L A, Aleksyuk V A, Dergach S M, Leleko T I. 2000. Species diversity of zooplankton in the water bodies of the Ob North. Vestnik ekolgii, Lesovedenia I Landshavtoveniya, 1: 127–134. (in Russian)

    Google Scholar 

  • Senicheva M I, Gubelit Y, Prazukin A V, Shadrin N V. 2008). Phytoplankton of the Crimean hypersaline lakes. In: Tokarev Yu N, Finenko Z Z, Shadrin N V eds. The Black Sea Microalgae: Problems of Biodiversity Preservation and Biotechnological Usage. ECOSI- Gidrofizika, Sevastopol. p.5–18. (in Russian)

  • Senicheva M I. 2005. Green alga Dunaliella salina in the natural conditions. Ecologiya Morya, 67: 61–63. (in Russian)

    Google Scholar 

  • Shadrin N V, Anufriieva E V. 2013. Dependence of Arctodiaptomus salinus (Calanoida, Copepoda) halotolerance on exoosmolytes: new data and a hypothesis. J. Medit. Ecol., 12: 21–26.

    Google Scholar 

  • Shadrin N V. 2009. The Crimean hypersaline lakes: towards development of scientific basis of integrated sustainable management. Wuhan, China. http://wldb.ilec.or.jp/data/ilec/WLC13_Papers/S12/s12-1.pdf.

    Google Scholar 

  • Shadrin N V. 2012. Crustaceans in Hypersaline water bodies: the specificity of the existence and adaptation. In: Korovchinsky N M, Zhdanova S M, Krylov A V eds. Actual Problems of Crustacean Study in Continental Waters. OOO Kostroma Printing House, Kostroma. p.316–319. (in Russian)

    Google Scholar 

  • Shen J R, Chen Y, Song D X. 1963. Notes on the Copepoda fauna of Chinghai province, China. Acta Zool. Sin., 15 (2): 263–272. (in Chinese with English abstract)

    Google Scholar 

  • Stuge T S, Matmuratov C A, Krupa E G, Akberdina G Z. 2003. Peculiarities of the plankton shrimps development in waterbodies of Semipalatinsk test range zone in 2002. Vestnik Natsional’nogo Yadernogo Tsentra Respubliki Kazakhstan, 3: 141–149. (in Russian)

    Google Scholar 

  • Svetlichny L, Hubareva E, Khanaychenko A. 2012. Calanipeda aquaedulcis and Arctodiaptomus salinus are exceptionally euryhaline osmoconformers: evidence from mortality, oxygen consumption, and mass density patterns. Mar. Ecol. Progr. Ser., 470: 15–29, http://dx.doi.org/10.3354/meps09907.

    Article  Google Scholar 

  • Tiffany M A, Swan B K, Watts J M, Hurlbert S H. 2002. Metazooplankton dynamics in the Salton Sea, California, 1997-1999. Hydrobiologia, 473 (1-3): 103–120, http://dx. doi.org/10.1023/A:1016529617757.

    Article  Google Scholar 

  • Timms B V. 1987. Limnology of Lake Buchanan, a tropical saline lake and associated pools, of North Queensland. Austr. J. Mar. Freshw. Res., 38 (6): 877–884, http://dx.doi.org/10.1071/MF9870877.

    Google Scholar 

  • Timms B V. 1993. Saline lakes of the Paroo, inland New South Wales, Australia. Hydrobiologia, 267 (1-3): 269–289, http://dx.doi.org/10.1007%2FBF00018808.

    Article  Google Scholar 

  • Timms B V. 2001. A study of the Werewilka Inlet of the saline Lake Wyara, Australia-a harbour of biodiversity for a sea of simplicity. Hydrobiologia, 466 (1-3): 245–254, http://dx.doi.org/10.1023/A:1014597131801.

    Article  Google Scholar 

  • Timms B V. 2009. Study of the saline lakes of the Esperance Hinterland, Western Australia, with special reference to the roles of acidity and episodicity. Nat. Res. Environ. Res. Environ. Iss., 15 (1): 215–225, http://digitalcommons.usu.edu/nrei/vol15/iss1/44.

    Google Scholar 

  • Tseeb Y Y. 1958. Composition and quantitative development of microbenthal fauna in the downstream of the Dnieper and in the bodies of water of the Crimea. Zoologicheskii Zhurnal, 371: 3–12. (in Russian)

    Google Scholar 

  • Van Der Meeren T, Olsen R E, Hamre K, Fyhn H J. 2008. Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture, 274 (2-4): 375–397, http://dx.doi.org/10.1016/j.aquaculture.2007.11.041.

    Article  Google Scholar 

  • Vesnina L V. 2003. Structure and Functioning of Zooplankton Communities of Lake Ecosystems in South Part of West Siberia. Dr. Sc. Thesis, Altai University, Barnaul, Russia. 210p. (in Russian)

    Google Scholar 

  • Walter T C, Boxshall G. 2015. World of Copepods. http://www.marinespecies.org/copepoda/aphia.php?p=taxdetails&id=349512. Accessed on 2015-06-17.

  • Williams W D, Kokkinn M J. 1988. The biogeographical affinities of the fauna in episodically filled salt lakes: a study of Lake Eyre South, Australia. Hydrobiologia, 158 (1): 227–236, http://dx.doi.org/10.1007/BF00026280.

    Article  Google Scholar 

  • Yancey P H. 2001. Water stress, osmolytes and proteins. Am. Zool., 41 (4): 699–709, http://dx.doi.org/10.1093/icb/41.4.699.

    Google Scholar 

  • Yermolayeva N I. 2012. Seasonal changes in Cladocera community in lakes of different salinity in Barabinsk- Kulunda lake province (South of Western Siberia). In: Korovchinsky N M, Zhdanova S M, Krylov A V eds. Actual Problems of Crustacean Study in Continental Waters. OOO Kostroma Printing House, Kostroma. p.187–189. (in Russian)

    Google Scholar 

  • Zagorodnyaya Y A, Batogova E A, Shadrin N V. 2008. Longterm transformation of zooplankton in the hypersaline lake Bakalskoe (Crimea) under salinity fluctuations. Morskoi Ecologicheskii Zhurnal, 7: 41–50. (in Russian)

    Google Scholar 

  • Zavarzin G A. 2003. Lectures on Natural Historical Microbiology. Nauka, Moscow. 348p. (in Russian)

    Google Scholar 

  • Zernov S A. 1949. General Hydrobiology. Akad. Nauk USSR, Moscow. 587p. (in Russian)

    Google Scholar 

  • Zhao W, He Z H. 1999. Biological and ecological features of inland saline waters in North Hebei, China. Int. J. Salt Lake Res., 8 (3): 267–285, http://dx.doi.org/10.1023/A:1009091216842.

    Google Scholar 

  • Zhao W, Zheng M P, Xu X Z, Liu X F, Guo G L, He Z H. 2005. Biological and ecological features of saline lakes in northern Tibet, China. Hydrobiologia, 541 (1): 189–203, http://dx.doi.org/10.1007/s10750-004-5707-0.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Anufriieva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anufriieva, E.V. Do copepods inhabit hypersaline waters worldwide? A short review and discussion. Chin. J. Ocean. Limnol. 33, 1354–1361 (2015). https://doi.org/10.1007/s00343-014-4385-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-014-4385-7

Keywords

Navigation