Skip to main content
Log in

Spatiotemporal features and possible mechanisms of seasonal changes in sea surface height south of Japan

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Variations of sea surface height (SSH) in the Kuroshio south of Japan are addressed by analyzing 19-year (1993–2011) altimetry data from AVISO. Regionally averaged time series of observed SSH had a rising linear trend at 2.64±0.72 mm/a in this period. By analyzing the power spectra, several periods were recognized in temporal SSH variations, including those around 90 and 360 days. The seasonal cycle of SSH was minimum in winter (February) and maximum in summer (August), with peak-to-peak amplitude about 20.0 cm. The spatial distribution of linear trends was inhomogeneous, with a rising linear trend along the coastline and a tripole structure offshore. Spatial distributions of standard deviation of seasonal SSH show very dynamic activities in the southeast of Kyushu and south of Honshu. Seasonal variations of observed SSH are partially explained by surface buoyancy forcing, local wind forcing and the steric component related to subsurface water beneath the mixed layer. Results show different spatial distributions of correlation coefficient and estimation skill between seasonally observed and modeled SSH, which are calculated from surface buoyancy flux, local wind forcing and the steric component related to subsurface water. Of those three, the surface buoyancy flux has a greater contribution to variations of observed SSH on the seasonal time scale south of Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AVISO. 2008. SSALTO/DUCAS user handbook: (M)SLA and (M)ADT near-real time and delayed time products. Aviso Altimetry, Ramonville St. Agne, France. 32p.

    Google Scholar 

  • Balmaseda M A, Vidard A, Anderson D L T. 2008. The ECMWF ocean analysis system: ORA-S3. Mon. Weather Rev., 136: 3 018–3 034.

    Article  Google Scholar 

  • Calafat F M, Chambers D P, Tsimplis M N. 2012. Mechanisms of decadal sea level variability in the eastern North Atlantic and the Mediterranean Sea. J. Geophys. Res., 117: C09022, http://dx.doi.org/10.1029/2012JC008285.

    Google Scholar 

  • Calafat F M, Marcos M, Gomis D. 2010. Mass contribution to the Mediterranean Sea level variability for the period 1948–2000. Global Planet Change, 73: 193–201.

    Article  Google Scholar 

  • Cazenave A, Dominh K, Gennero M C, Ferret B. 1998. Global mean sea level change observed by TOPEX/POSEIDON and ERS-1. Physics and Chemistry of the Earth, 23: 1 069–1 075.

    Article  Google Scholar 

  • Cazenave A, Llovel W. 2010. Contemporary sea level rise. Annual Review of Marine Science, 2: 145–173.

    Article  Google Scholar 

  • Cazenave A, Nerem R S. 2004. Present-day sea level change: observations and causes. Review of Geophysics, 42, http://dx.doi.org/10.1029/2003RG000139.

  • Choi B-J, Haidvogel D B, Cho Y-K. 2004. Nonseasonal sea level variations in the Japan/East Sea from satellite altimeter data. J. Geophys. Res., 109, http://dx.doi.org/10.1029/2004JC002387.

  • Church J A, White N J. 2011. Sea-level rise from the late 19 th to the early 21 st century. Surv. Geophys., 32: 585–602.

    Article  Google Scholar 

  • Cummins P, Lagerloef G. 2002. Low-frequency pycnocline depth variability at ocean weather station in the northeast Pacific. J. Phys. Oceanogr., 32: 3 207–3 215.

    Article  Google Scholar 

  • Di Lorenzo E, Schneider N, Cobb K M, Chhak K, Franks P J S, Miller A J, McWilliams J C, Bograd S J, Arango H, Curchister E, Powell T M, Rivere P. 2008. North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett., 35: L08607, http://dx.doi.org/10.1029/2007GL032838.

    Article  Google Scholar 

  • Ducet N, Le Traon P Y, Reverdin G. 2002. Global highresolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105: 19 477–19 498.

    Article  Google Scholar 

  • Gill A E, Niller P P. 1973. The theory of the seasonal variability of the ocean. Deep Sea Res., 20: 141–177.

    Google Scholar 

  • Griffies S M, Greatbatch R J. 2012. Physical processes that impact the evolution of global mean sea level in ocean climate models. Ocean Modelling, 51: 37–72.

    Article  Google Scholar 

  • Ishii M, Kimoto M, Kachi M. 2003. Historical ocean subsurface temperature analysis with error estimates. Monthly Weather Review, 131: 51–73.

    Article  Google Scholar 

  • Ishii M, Kimoto M, Sakamoto K, Iwasaki S I. 2006. Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J. Oceanogr., 62: 155–170.

    Article  Google Scholar 

  • Ishii M, Kimoto M. 2009. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias correlations. J. Oceanogr., 65: 287–299.

    Article  Google Scholar 

  • Ishii M, Shouji A, Sugimoto S, Matsumoto T. 2005. Objective analyses of SST and marine meteorological variables for the 20th century using COADS and the Kobe Collection. Int. J. Climatol., 25: 865–879.

    Article  Google Scholar 

  • Kawabe M. 1980. Sea level variations along the south coast of Japan and the large meander in the Kuroshio. J. Oceanogr. Soc. Japan, 36: 97–104.

    Article  Google Scholar 

  • Kawabe M. 1985. Sea level variations at the Izu Islands and typical stable paths of the Kuroshio. J. Oceanogr. Soc. Japan, 41: 307–326.

    Article  Google Scholar 

  • Kawabe M. 1987. Spectral properties of sea level and time scales of Kuroshio path variations. J. Oceanogr. Soc. Japan, 43: 111–123.

    Article  Google Scholar 

  • Kuroda H, Shimizu M, Hirota Y, Akiyama H. 2007. Intraanual variability of sea level around Tosa Bay. J. Oceanogr., 63: 849–862.

    Article  Google Scholar 

  • Le Traon P Y, Faugere Y, Hernandez F, Dorandeu J, Mertz F, Ablain M. 2003. Can we merge GEOSAT Follow-On with TOPEX/Poseidon and ERS-2 for an improved description of the ocean circulation? J. Atmos. Oceanic. Technol., 20: 889–895.

    Article  Google Scholar 

  • Liu X Y, Liu Y G, Guo L, Rong Z R, Gu Y Z, Liu Y H. 2010. Interannual changes of sea level in the two regions of East China Sea and different responses to ENSO. Glob. Planet Change, 72: 215–226.

    Article  Google Scholar 

  • Möller J, Dommenget D, Semenov V A. 2008. The annual peak in the SST anomaly spectrum. J. Climat., 21: 2 810–2 823.

    Article  Google Scholar 

  • Nagano A, Kawabe M. 2005. Coastal disturbance in sea level propagating along the south coast of Japan and its impact on the Kuroshio. J. Oceanogr., 61: 885–903.

    Article  Google Scholar 

  • Qiu B, Chen S M. 2006. Decadal variability in the formation of the North Pacific Subtropical Mode Water: oceanic versus atmospheric control. J. Phys. Oceanogr., 36: 1 365–1 380.

    Article  Google Scholar 

  • Qiu B. 2002. Large-scale variability in the midlatitude subtropical and subpolar North Pacific Ocean: observations and causes. J. Phys. Oceanogr., 32: 353–375.

    Article  Google Scholar 

  • Qiu B. 2003. Kuroshio Extension variability and forcing of the Pacific decadal oscillations: responses and potential feedback. J. Phys. Oceanogr., 33: 2 465–2 482.

    Article  Google Scholar 

  • Sekine Y, Fujita K. 1999. Why does the sea level difference between Kushimoto and Uragami show periods of large meander and non-large meander paths of the Kuroshio south of Japan? J. Oceanogr., 55: 43–51.

    Article  Google Scholar 

  • Sekine Y, Ishii H, Toba Y. 1985. Spin-up and spin-down processes of the large cold water mass of the Kuroshio south of Japan. J. Oceanogr. Society of Japan, 41: 207–212.

    Article  Google Scholar 

  • Senjyu T, Matsuyama M, Matsubara N. 1999. Interannual and decadal sea-level variations along the Japanese coast. J. Oceanogr., 55: 619–633.

    Article  Google Scholar 

  • Stammer D. 1997. Steric and wind-induced changes in TOPEX/Poseidon large-scale sea surface topography observations. J. Geophys. Res., 102: 20 987–21 009.

    Article  Google Scholar 

  • Tabata S, Thomas B, Ramsden D. 1986. Annual and interannual variability of steric sea level along line P in the northeast Pacific Ocean. J. Phys. Oceanogr., 16: 1 378–1 398.

    Article  Google Scholar 

  • Tomizawa K, Hanawa K, Kurasawa Y, Toba Y. 1984. Variability of monthly mean sea level and its regional features around Japan and Korea. In: Ichiye T ed. Ocean Hydro. Japan and East China Seas. Elsevier, Amsterdam. p.273–285.

    Chapter  Google Scholar 

  • Vivier F, Kelly K A, Thompson L. 1999. Contributions of wind forcing, waves, and surface heating to sea surface height observations in the Pacific Ocean. J. Geophys. Res., 104: 20 767–20 788.

    Article  Google Scholar 

  • Wunsch C, Ponte R M, Heimbach P. 2007. Decadal trends in sea level patterns: 1993–2004. J. Clim., 20: 5 889–5 911.

    Article  Google Scholar 

  • Yasuda T, Sakurai K. 2006. Interdecadal variability of the sea surface height around Japan. Geophys. Res. Lett., 33: L01606, http://dx.doi.org/10.1029/2005GL024920.

    Google Scholar 

  • Yoshida S, Qiu B, Hacker P. 2010. Wind-generated eddy characteristics in the lee of the island of Hawaii. J. Geophys. Res., 115: C03019, http://dx.doi.org/10.1029/2009JC005417.

    Google Scholar 

  • Zhang Z Z, Ichikawa K. Influence of the Kuroshio fluctuations on sea level variations along the south coast of Japan. J. Oceanogr., 61: 979–985.

  • Zhou J, Li P L, Yu H L. 2012. Characteristics and mechanisms of sea surface height in the South China Sea. Global and Planetary Change, 88–89: 20–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libin Ma  (马利斌).

Additional information

Supported by the National Natural Science Foundation of China (No. 41230420), the Basic Research Program of Science and Technology Projects of Qingdao (No. 11-1-4-95-jch) and the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-EW-201)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L. Spatiotemporal features and possible mechanisms of seasonal changes in sea surface height south of Japan. Chin. J. Ocean. Limnol. 32, 933–945 (2014). https://doi.org/10.1007/s00343-014-3224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-014-3224-1

Keyword

Navigation