Advertisement

Chinese Journal of Oceanology and Limnology

, Volume 32, Issue 1, pp 148–154 | Cite as

From sea to land: assessment of the bio-transport of phosphorus by penguins in Antarctica

  • Xianyan Qin (秦先燕)
  • Liguang Sun (孙立广)Email author
  • Jules M. Blais
  • Yuhong Wang (王玉宏)
  • Tao Huang (黄涛)
  • Wen Huang (黄温)
  • Zhouqing Xie (谢周清)
Chemistry

Abstract

In Antarctica, the marine ecosystem is dynamically interrelated with the terrestrial ecosystem. An example of the link between these two ecosystems is the biogeochemical cycle of phosphorus. Biovectors, such as penguins, transport phosphorus from sea to land, play a key role in this cycle. In this paper, we selected three colonies of penguins, the most important seabirds in Antarctica, and computed the annual quantity of phosphorus transferred from sea to land by these birds. Our results show that adult penguins from colonies at Ardley Island, the Vestfold Hills, and Ross Island could transfer phosphorus in the form of guano at up to 12 349, 167 036, and 97 841 kg/a, respectively, over their breeding period. These quantities are equivalent to an annual input of 3.96×109–1.63×1010 kg of seawater to the land of Antarctica. Finally, we discuss the impact of phosphorus on the ice-free areas of the Antarctica.

Keyword

Southern Ocean sea-land ecosystem phosphorus cycle penguin guano 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainley D G, Ribic C A, Ballard G, Heath S, Gaffney I, Karl B J, Barton K J, Wilson P R, Webb S. 2004. Geographic structure of Adélie penguin populations: overlap in colonyspecific foraging areas. Ecol. Monogr., 74: 159–178.CrossRefGoogle Scholar
  2. Ainley D G. 2002. The Adélie Penguin: Bellwether of Climate Change. Columbia University Press, New York, USA.Google Scholar
  3. Atkinson A, Siegel V, Pakhomov E, Rothery P. 2004. Longterm decline in krill stock and increase in salps within the Southern Ocean. Nature, 432: 100–103.CrossRefGoogle Scholar
  4. Barbraud C, Weimerskirch H. 2006. Antarctic birds breed later in response to climate change. Proc. Natl. Acad. Sci. USA, 103: 6 248–6 251.CrossRefGoogle Scholar
  5. Bargagli R, Sanchez-Hernandez J C, Martella L, Monaci F. 1998. Mercury, cadmium and lead accumulation in Antarctic mosses growing along nutrient and moisture gradients. Polar. Biol., 19: 316–322.CrossRefGoogle Scholar
  6. Blais J M, Kimpe L E, McMahon D, Keatley B E, Mallory M L, Douglas M S V, Smol J P. 2005. Arctic seabirds transport marine-derived contaminants. Science, 309: 445–445.CrossRefGoogle Scholar
  7. Blais J M, Macdonald R W, Mackey D, Webster E, Harvey C, Smol J P. 2007. Biologically mediated transport of contaminants to aquatic systems. Environ. Sci. Technol., 41: 1 075–1 084.CrossRefGoogle Scholar
  8. Brimble S K, Blais J M, Kimpe L E, Mallory M L, Keatley B E, Douglas M S V, Smol J P. 2009. Bioenrichment of trace elements in a series of ponds near a northern fulmar (Fulmarus glacialis) colony at Cape Vera, Devon Island. Can. J. Fish. Aquat. Sci., 66: 949–958.CrossRefGoogle Scholar
  9. Ducklow H W, Baker K, Martinson D G, Quetin L B, Ross R M, Smith R C, Stammerjohn S E, Vernet M, Fraser W. 2007. Marine pelagic ecosystems: the West Antarctic Peninsula. Phil. Trans. R. Soc. B., 362: 67–94.CrossRefGoogle Scholar
  10. Emslie S D, Fraser W, Smith R C, Walker W. 1998. Abandoned penguin colonies and environmental change in the Palmer Station area, Anvers Island, Antarctic Peninsula. Antarct. Sci., 10: 257–268.CrossRefGoogle Scholar
  11. Fariña J M, Salazar S, Wallem K P, Witman J D, Ellis J C. 2003. Nutrient exchanges between marine and terrestrial ecosystems: the case of the Galapagos sea lion Zalophus wollebaecki. J. Anim. Ecol., 72: 873–887.CrossRefGoogle Scholar
  12. Green K, Johnstone G W. 1988. Changes in the diet of Adelie penguins breeding in east-Antarctica. Wildl. Res., 15: 103–110.CrossRefGoogle Scholar
  13. Hahn S, Bauer S, Klaassen M. 2007. Estimating the contribution of carnivorous waterbirds to nutrient loading in freshwater habitats. Freshwater Biol., 52: 2 421–2 433.CrossRefGoogle Scholar
  14. Han Z B, Pan J M, Hu C Y, Yu W, Xue B. 2010. Decomposition of organic carbon beneath euphotic zone in Prydz Bay, Antarctica. Chin. J. Polar. Res., 22: 254–261. (in Chinese with English abstract)Google Scholar
  15. Harrison S A. 2006. The Influence of Seabird-Derived Nutrients on Island Ecosystems in the Oligotrophic Marine Waters of South-Western Australia. Master degree thesis. School of Natural Sciences, Faculty of Computing, Health and Science Edith Cowan University.Google Scholar
  16. Hill S L, Murphy E J, Reid K, Trathan P N, Constable A J. 2006. Modelling Southern Ocean ecosystems: krill, the food-web, and the impacts of harvesting. Biol. Rev., 81: 581–608.CrossRefGoogle Scholar
  17. Hodson A, Heaton T, Langford H, Newsham K. 2010. Chemical weathering and solute export by meltwater in a maritime Antarctic glacier basin. Biogeochemistry, 98: 9–27.CrossRefGoogle Scholar
  18. Huang T, Sun L G, Wang Y H, Kong D M. 2011. Late Holocene Adélie penguin population dynamics at Zolotov Island, Vestfold Hills, Antarctica. J. Paleolimnol., 45: 273–285.CrossRefGoogle Scholar
  19. Huang T, Sun L G, Wang Y H, Liu X D, Zhu R B. 2009. Penguin population dynamics for the past 8500 years at Gardner Island, Vestfold Hills. Antarct. Sci., 21: 571–578.CrossRefGoogle Scholar
  20. Izaguirre I, Mataloni G, Vinocur A, Tell G. 1993. Temporal and spatial variations of phytoplankton from Boeckella Lake (Hope Bay, Antarctic Peninsula). Antarct. Sci., 5(2): 137–141.CrossRefGoogle Scholar
  21. Keatley B E, Douglas M S V, Smol J P. 2007. Physical and chemical limnological characteristics of lakes and ponds across environmental gradients on Melville Island, Nunavut/N.W.T., High Arctic Canada. Fund. Appl. Limnol., 168: 355–376.CrossRefGoogle Scholar
  22. Korczak-Abshire M. 2010. Climate change influences on Antarctic bird populations. Papers on Global Change, 17: 53–66.Google Scholar
  23. Lindeboom H J. 1984. The nitrogen pathway in a penguin rookery. Ecol., 65: 269–277.CrossRefGoogle Scholar
  24. Lynch H J, Fagan W F, Naveen R. 2010. Population trends and reproductive success at a frequently visited penguin colony on the western Antarctic Peninsula. Polar Biol., 33: 493–503.CrossRefGoogle Scholar
  25. Lynnes A S, Reid K, Croxall J P. 2004. Diet and reproductive success of Adélie and chinstrap penguins: linking response of predators to prey population dynamics. Polar Biol., 27: 544–554.CrossRefGoogle Scholar
  26. Lyver P O’ B, MacLeod C J, Ballard G, Karl B J, Barton K J, Adams J, Ainley D G, Wilson P R. 2011. Intra-seasonal variation in foraging behavior among Adélie penguins (Pygocelis adeliae) breeding at Cape Hallett, Ross Sea, Antarctica. Polar Biol., 34: 49–67.CrossRefGoogle Scholar
  27. Manny B A, Johnson W C, Wetzel R G. 1994. Nutrient additions by waterfowl to lakes and reservoirs: predicting their effects on productivity and water-quality. Hydrobiologia, 280: 121–132.CrossRefGoogle Scholar
  28. Marschall H P. 1988. The overwintering strategy of Antarctic krill under the pack-ice of the Weddell Sea. Polar Biol., 9: 129–135.CrossRefGoogle Scholar
  29. Myrcha A, Tatur A. 1991. Ecological role of the current and abandoned penguin rookeries in the land environment of the maritime Antarctic. Pol. Polar Res., 12: 3–24.Google Scholar
  30. Nędzarek A, Pociecha A. 2010. Limnological characterization of freshwater systems of the Thomas Point Oasis (Admiralty Bay, King George Island, West Antarctica). Polar Sci., 4: 457–467.CrossRefGoogle Scholar
  31. Nędzarek A, Rakusa-Suszczewski S. 2004. Decomposition of macroalgae and the release of nutrient in Admiralty Bay, King George Island, Antarctica. Polar Biosci., 17: 26–35.Google Scholar
  32. Nędzarek A, Rakusa-Suszczewski S. 2007. Nutrients and conductivity in precipitation in the coast of King George Island (Antarctica) in relation to wind speed and penguin colony distance. Pol. J. Ecol., 55: 705–716.Google Scholar
  33. Nędzarek A. 2008. Sources, diversity and circulation of biogenic compounds in Admiralty Bay, King George Island, Antarctica. Antarct. Sci., 20: 135–145.Google Scholar
  34. Nędzarek A. 2010. Change in N and P concentrations in antarctic streams as a response to change in penguin populations. Papers on Global Change, 17: 67–80.Google Scholar
  35. Pauly T, Nicol S, Higginbottom I, Hosie G, Kitchener J. 2000. Distribution and abundance of Antarctic krill (Euphausia superba) off East Antarctica (80–150°E) during the Austral summer of 1995/1996. Deep-Sea Res. II., 47: 2 465–2 488.CrossRefGoogle Scholar
  36. Pitman R L, Durban J W. 2010. Killer whale predation on penguins in Antarctica. Polar Biol., 33: 1 589–1 594.CrossRefGoogle Scholar
  37. Polis G A, Anderson W B, Holt R D. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Evol. Syst., 28: 289–316.CrossRefGoogle Scholar
  38. Puddicombe R A, Johnstone G W. 1988. The breeding season diet of Adélie penguins at the Vestfold Hills, East Antarctica. Hydrobiologia, 165: 239–253.CrossRefGoogle Scholar
  39. Qin XY, Huang T, Sun L G. 2013. Nutrients flow and phosphorus cycle in sea-land interface in the Antarctica. Chinese Journal of Ecology, 32(1): 195–203. (in Chinese with English abstract)Google Scholar
  40. Rakusa-Suszczewski S. 2003. Functioning of the geoecosystem for the West side of Admiralty Bay (King George Island, Antarctica): outline of research at Arctowski Station. Ocean Polar Res., 25: 653–662.CrossRefGoogle Scholar
  41. Sánchez-Piñero F, Polis G A. 2000. Bottom-up dynamics of allochthonous input: direct and indirect effects of seabirds on islands. Ecol., 81: 3 117–3 132.Google Scholar
  42. Sun L G, Xie Z Q, Liu X D, Yin X B, Zhu R B. 2006. Ecogeology of Ice-Free Areas in Antarctica. China Science Press, Beijing. (in Chinese)Google Scholar
  43. Sun L G, Xie Z Q, Zhao J L. 2000. A 3,000-year record of penguin populations. Nature, 407: 858–858.CrossRefGoogle Scholar
  44. Sun L G, Xie Z Q. 2001. Relics: penguin population programs. Sci. Prog., 84: 31–44.CrossRefGoogle Scholar
  45. Sun W P, Cai M H, Wang H Y, Xing C, Lu B, Peter H U, Froehlich A. 2010. Distribution and rerpoductive behavior of penguins on Ardley Island and their environmental impact factors. Chin. J. Polar Res., 22: 33–41. (in Chinese with English abstract)CrossRefGoogle Scholar
  46. Tatur A, Myrcha A. 1984. Ornithogenic soils on King George Island, South Shetland Islands (Maritime Antarctic Zone). Pol. Polar Res., 5: 31–60.Google Scholar
  47. Taylor R H. 1962. The Adélie Penguin Pygoscelis adeliae at Cape Royds. Ibis, 104: 176–204.CrossRefGoogle Scholar
  48. Trivelpiece W Z, Hinke J T, Miller A K, Reiss C S, Trivelpiece S G, Watters G M. 2011. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc. Natl. Acad. Sci. USA., 108: 7 625–7 628.CrossRefGoogle Scholar
  49. Trivelpiece W Z, Trivelpiece S G, Volkman N J. 1987. Ecological segregation of Adélie, gentoo, and chinstrap penguins at King George Island, Antarctica. Ecol., 68: 351–361.CrossRefGoogle Scholar
  50. Vidal E, Jouventin P, Frenot Y. 2003. Contribution of alien and indigenous species to plant-community assemblages near penguin rookeries at Crozet archipelago. Polar Biol., 26: 432–437.Google Scholar
  51. Whitehead M D, Johnstone G W. 1990. The distribution and estimated abundance of Adélie penguins breeding in Prydz Bay, Antarctica. Polar Biol., 3: 91–98.Google Scholar
  52. Wu B L. 1998. Studies on ecosystem of Fildes Peninsula and its adjecent areas, Antarctica. In: The Achievements and Developments of China on Scientific Research of Antarcitca. China Ocean Press, Beijing, p.65–138. (in Chinese)Google Scholar
  53. Zhu R B, Kong D M, Sun L G, Geng J J, Wang X R, Glindemann D. 2006b. Tropospheric phosphine and its sources in coastal Antarctica. Environ. Sci. Technol., 40: 7 656–7 661.CrossRefGoogle Scholar
  54. Zhu R B, Sun L G, Kong D M, Geng J J, Wang N, Wang Q, Wang X R. 2006a. Matrix-bound phosphinein Antarctic biosphere. Chemosphere, 64: 1 429–1 435.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xianyan Qin (秦先燕)
    • 1
  • Liguang Sun (孙立广)
    • 1
    Email author
  • Jules M. Blais
    • 2
  • Yuhong Wang (王玉宏)
    • 3
  • Tao Huang (黄涛)
    • 1
  • Wen Huang (黄温)
    • 1
    • 4
  • Zhouqing Xie (谢周清)
    • 1
  1. 1.Institute of Polar Environment, School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Program for Chemical and Environmental Toxicology, Department of BiologyUniversity of OttawaOttawaCanada
  3. 3.Advanced Management Research CenterNingbo UniversityNingboChina
  4. 4.Department of GeneticsNorth Carolina State UniversityRaleighUSA

Personalised recommendations