Skip to main content
Log in

Effect of Fe3+ on the growth and lipid content of Isochrysis galbana

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Inducing lipid accumulation in microalgae cells without suppressing cell growth is vital to the economical production of biodiesel from microalgae. In two experiments, we demonstrate that the cell concentration and lipid content of marine microalgae Isochrysis galbana depend upon the iron concentration in the growth media. In Experiment I, adding chelated FeCl3 to the medium at the late exponential growth phase prolonged this phase and increased the lipid content in I. galbana cells. The final cell density and lipid content of I. galbana supplemented with chelated FeCl3 was approximately 2 and 1.65 times higher than that of non-supplemented cultures, respectively. In Experiment II, I. galbana cells in the late exponential phase were collected and re-inoculated into new media containing Fe3+ at various concentrations. The final cell concentration and lipid content were maximized at the highest iron concentration (38% biomass by dry weight at 1.2×10−5 mol/L Fe3+). In this study, intracellular neutral lipid storage was evaluated by fluorescent spectrophotometry using fluorochrome Nile red, and the measurement conditions were optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonzo F, Mayzaud P. 1999. Spectrofluorometric quantification of neutral and polar lipids in zooplankton using Nile red. Mar. Chem., 67: 289–301.

    Article  Google Scholar 

  • Bligh E G, Dyer W J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37: 911–917.

    Article  Google Scholar 

  • Boyd P W, Watson A J, Law C S, Abraham E R, Trull T, Murdoch R, Bakker D C E, Bowie A R, Buesseler K O, Chang H, Charette M, Croot P, Downing K, Frew R, Gall M, Hadfield M, Hall J, Harvey M, Jameson G, LaRoche J, Liddicoat M, Ling R, Maldonado M T, McKay R M, Nodder S, Pickmere S, Pridmore R, Rintoul S, Safi K, Sutton P, Strzepek R, Tanneberger K, Turner S, Waite A, Zeldis J. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature, 407: 695–702.

    Article  Google Scholar 

  • Brown M R, Dunstan G A, Jeffrey S W, Volkman J K, Barrett S M, LeRoi J M. 1993. The influence of irradiance on the biochemical composition of the Prymnesiophyte Isochrysis sp. J. Phycol., 29: 601–612.

    Article  Google Scholar 

  • Chen W, Sommerfeld M, Hu Q. 2011. Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour. Technol., 102: 135–141.

    Article  Google Scholar 

  • Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv., 25: 294–306.

    Article  Google Scholar 

  • Cooksey K E, Guckert J B, Williams S A, Collis P R. 1987. Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. J. Microbiol. Meth., 6: 333–345.

    Article  Google Scholar 

  • de la Jara A, Mendoza H, Martel A et al. 2003. Flow cytometric determination of lipid content in a marine dinoflagellate Crypthecodinium cohnii. J. Appl. Phycol., 15: 433–438.

    Article  Google Scholar 

  • Elsey D, Jameson D, Raleigh B, Cooney M J. 2007. Fluorescent measurement of microalgal neutral lipids. J. Appl. Phycol., 68: 639–642.

    Google Scholar 

  • Floreto E A T, Teshima S, Ishikawa M. 1996. Effects of nitrogen and phosphorus on the growth and fatty acid composition of Ulva pertusa Kjellman (Chlorophyta). Bot. Mar., 39: 69–74.

    Article  Google Scholar 

  • Glover H. 1977. Effects of iron deficiency on Isochrysis galbana (Chrysophyceae) and Phaeodactylum tricornutum (Bacillariophyceae). J. Phycol., 13: 208–212.

    Google Scholar 

  • Golterman H L. 1969. Methods for Chemical Analysis of Fresh Waters. International Biological Programme Handbook. No.8. Oxford: Bladkwell Scientific Publications.

    Google Scholar 

  • Greenspan P, Mayer E P, Fowle S D. 1985. Nile red: a selective fluorescent stain for intracellular lipid droplets. J. Cell Biol., 100: 965–973.

    Article  Google Scholar 

  • Guillard R R, Ryther J H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve). Gran. Can. J. Microbiol., 8: 229–239.

    Google Scholar 

  • Hutchins D A, Bruland K W. 1998. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature, 393: 561–564.

    Article  Google Scholar 

  • Illman A M, Scragg A H, Shales S W. 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Tech., 27: 631–635.

    Article  Google Scholar 

  • Khozin-Goldberg I, Cohen Z. 2006. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry, 67: 696–701.

    Article  Google Scholar 

  • Kimura K, Yamaoka M, Kamisaka Y. 2004. Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. J. Microbiol. Meth., 56: 331–338.

    Article  Google Scholar 

  • Lee SJ, Yoon B-D, Oh H-M. 1998. Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech., 12: 553–556.

    Article  Google Scholar 

  • Lin Y, Harrison P J. 2000. Research on red tide occurrences using enclosed experimental ecosystems in west Xiamen Harbor, China-relationship between various factors and red tide occurrences. Chin. J. Oceanol. Limnol., 18: 148–156.

    Article  Google Scholar 

  • Liu Z Y, Wang G C, Zhou B C. 2008. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour. Technol., 99: 4 717–4 722.

    Article  Google Scholar 

  • Lombardi A T, Wangersky P J. 1991. Influence of phosporus and silicon on lipid class production by the marine diatom Chaetoceros gracilis grown in turbidostat cage cultures. Mar. Eco. Progr. Ser., 77: 39–47.

    Article  Google Scholar 

  • Lynn S G, Kilham S S, Kreeger D A, Interlandi S J. 2000. Effect of nutrient availability on the biochemical and elemental stoichiometry in freshwater diatom Stephanodiscus minutulus acillariophyceae. J. Phycol., 36: 510–522.

    Article  Google Scholar 

  • McGinnis K M, Dempster T A, Sommerfeld M R. 1997. Characterization of the growth and lipid content of the diatom Chaetoceros muelleri. J. Appl. Phycol., 9: 19–24.

    Article  Google Scholar 

  • Molina Grima E, García Camacho F, Sánchez Pérez J A, García Sánchez J L. 1994 Biochemical productivity and fatty acid profiles of Isochrysis galbana Parke and Teraselmis sp. as a function of incident light intensity. Process Biochem., 29: 119–126.

    Article  Google Scholar 

  • Rao A R, Dayananda C, Sarada R, Shamala T R, Ravishankar G A. 2007. Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Process Biochem., 98: 560–564.

    Google Scholar 

  • Reitan K I, Rainuzzo J R, Olsen Y. 1994. Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J. Phycol., 30: 972–979.

    Article  Google Scholar 

  • Schenk P M, Thomas-Hall S R, Stephens E, Marx U C, Mussgnug J H, Posten C, Kruse O, Hankamer B. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg. Res., 1: 20–43.

    Article  Google Scholar 

  • Tang Q Y, Feng M G. 2007. DPS Data processing system: Experimental Design, Statistical Analysis, and Data Mining. Science Press, Beijing.

    Google Scholar 

  • Terry N, Abadla J. 1986. Function of iron in chloroplasts. J. Plant. Nutr., 9: 609–646.

    Article  Google Scholar 

  • UNESCO. 1966. Determination of Photosynthetic Pigments in Seawater, Rep. COR/UNESCO WG 17, UNESCO Monogr. Oceanogr. Methodol., 1, Paris.

    Google Scholar 

  • Wijffels R H, Barbosa M J. 2010. An outlook on microalgal biofuels. Science, 329: 796–799.

    Article  Google Scholar 

  • Williams W J. 1979. Handbook of Anion Determination. Butterworths, London. p.119.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangce Wang  (王广策).

Additional information

Supported by the National Natural Science Foundation of China (No. 40966002) and the Natural Science Foundation of Hainan Province, China (No. 409001)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Wang, G. Effect of Fe3+ on the growth and lipid content of Isochrysis galbana . Chin. J. Ocean. Limnol. 32, 47–53 (2014). https://doi.org/10.1007/s00343-014-3110-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-014-3110-x

Keyword

Navigation