Skip to main content

Advertisement

Log in

Optimal nonlinear excitation of decadal variability of the North Atlantic thermohaline circulation

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Nonlinear development of salinity perturbations in the Atlantic thermohaline circulation (THC) is investigated with a three-dimensional ocean circulation model, using the conditional nonlinear optimal perturbation method. The results show two types of optimal initial perturbations of sea surface salinity, one associated with freshwater and the other with salinity. Both types of perturbations excite decadal variability of the THC. Under the same amplitude of initial perturbation, the decadal variation induced by the freshwater perturbation is much stronger than that by the salinity perturbation, suggesting that the THC is more sensitive to freshwater than salinity perturbation. As the amplitude of initial perturbation increases, the decadal variations become stronger for both perturbations. For salinity perturbations, recovery time of the THC to return to steady state gradually saturates with increasing amplitude, whereas this recovery time increases remarkably for freshwater perturbations. A nonlinear (advective) feedback between density and velocity anomalies is proposed to explain these characteristics of decadal variability excitation. The results are consistent with previous ones from simple box models, and highlight the importance of nonlinear feedback in decadal THC variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alexander J, Monahan A H. 2009. Nonnormal perturbation growth of pure thermohaline circulation using a 2D zonally averaged model. J. Phys. Oceanogr., 39(2): 369–386.

    Article  Google Scholar 

  • Belkin I M, Levitus S, Antonov J I, Malmberg S A. 1998. “Great salinity anomalies” in the North Atlantic. Prog. Oceanogr., 41(1): 1–68.

    Article  Google Scholar 

  • De Niet A, Wubs F, Scheltinga A T, Dijkstra H A. 2007. A tailored solver for bifurcation analysis of ocean-climate models. J. Comput. Phys., 227(1): 654–679.

    Article  Google Scholar 

  • Dijkstra H A, Oksuzoglu H, Wubs F W, Botta E F F. 2001. A fully implicit model of the three-dimensional thermohaline ocean circulation. J. Comput. Phys., 173(2): 685–715.

    Article  Google Scholar 

  • Dijkstra H A, Te Raa L T, Schmeits M, Gerrits J. 2006. On the physics of the Atlantic multidecadal oscillation. Ocean Dyn., 56(1): 36–50.

    Article  Google Scholar 

  • Duan W, Mu M, Wang B. 2004. Conditional nonlinear optimal perturbations as the optimal precursors for El Niño-Southern Oscillation events. J. Geophys. Res. Atmos., 109: D23105, http://dx.doi.org/10.1029/2004JD004756.

    Article  Google Scholar 

  • Duan W, Xu H, Mu M. 2008. Decisive role of nonlinear temperature advection in El Niño and La Niña amplitude asymmetry. J. Geophys. Res. Oceans, 113: C1104, http://dx.doi.org/10.1029/2006JC003974.

    Google Scholar 

  • Duan W, Mu M. 2009. Conditional nonlinear optimal perturbation: applications to stability, sensitivity and predictability. Sci. China (D), 52(7): 883–906.

    Article  Google Scholar 

  • Duan W, Yu Y, Xu H, Zhao P. 2012. Behaviors of nonlinearities modulating the El Niño events induced by optimal precursory disturbances. Clim. Dynam., 40(5–6): 1 399–1 413.

    Google Scholar 

  • Grossmann I, Klotzbach P J. 2009. A review of North Atlantic modes of natural variability and their driving mechanisms. J. Geophys. Res. Atmos., 11 4: D24107, http://dx.doi.org/10.1029/2009JD012728.

    Article  Google Scholar 

  • Jiang Z, Mu M, Wang D. 2009. Experiments of ensemble forecast by conditional nonlinear optimal perturbation. Sci. China (D), 52(4): 511–518.

    Article  Google Scholar 

  • Knight J R. 2005. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32(20): 2–5.

    Article  Google Scholar 

  • Knight J R, Folland C K, Scaife A A. 2006. Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 33: L17706, http://dx.doi.org/10.1029/2006GL026242

    Article  Google Scholar 

  • Monahan A H, Alexander J, Weaver A. 2008. Stochastic models of the meridional overturning circulation: time scales and patterns of variability. Philos. Trans. R. Soc., 366(1875): 2 527–2 544.

    Google Scholar 

  • Mu M, Duan W, Wang B. 2003. Conditional nonlinear optimal perturbation and its applications. Nonlinear Proc. Geophys., 10(6): 493–501.

    Article  Google Scholar 

  • Mu M, Sun L, Dijkstra H A. 2004. The sensitivity and stability of the ocean’s thermohaline circulation to finite-amplitude perturbations. J. Phys. Oceanogr., 34(10): 2 305–2 315.

    Article  Google Scholar 

  • Mu M, Xu H, Duan W. 2007a. A kind of initial errors related to “spring predictability barrier” for El Niño event in Zebiak-Cane model. Geophys. Res. Lett., 34: L03709, http://dx.doi.org/10.1029/2006GL027412.

    Article  Google Scholar 

  • Mu M, Duan W, Wang B. 2007b. Season-dependent dynamics of nonlinear optimal error growth and ENSO predictability in a theoretical model. J. Geophys. Res., 112: D10113, http://dx.doi.org/10.1029/2005JD006981.

    Article  Google Scholar 

  • Mu M, Zhou F, Wang H. 2009. A method to identify the sensitive areas in targeting for tropical cyclone prediction: conditional nonlinear optimal perturbation. Mon. Wea. Rev., 137(5): 1 623–1 639.

    Article  Google Scholar 

  • Qin X, Mu M. 2011a. Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts. Q. J. R. Meteorol. Soc., 138(662): 185–197.

    Article  Google Scholar 

  • Qin X, Mu M. 2011b: A study on the reduction of forecast error variance by three adaptive observation approaches for tropical cyclone prediction. Mon. Wea. Rev., 139(7): 2 218–2 232.

    Article  Google Scholar 

  • Sévellec F, Jelloul M B, Huck T. 2007. Optimal surface salinity perturbations influencing the thermohaline circulation. J. Phys. Oceanogr., 37(12): 2 789–2 808.

    Article  Google Scholar 

  • Sévellec F, Huck T, Jelloul M B, Grima N. 2008. Optimal surface salinity perturbations of the meridional overturning and heat transport in a global ocean general circulation model. J. Phys. Oceanogr., 38(12): 2 739–2 754.

    Article  Google Scholar 

  • Sévellec F, Huck T, Jelloul M B, Vialard J. 2009. Nonnormal multidecadal response of the thermohaline circulation induced by optimal surface salinity perturbations. J. Phys. Oceanogr., 39(4): 852–872.

    Article  Google Scholar 

  • Sun L, Mu M, Sun D J, Yin X Y. 2005. Passive mechanism of decadal variation of thermohaline circulation. J. Geophys. Res. Oceans, 110: C07025, http://dx.doi.org/10.1029/2005JC002897.

    Article  Google Scholar 

  • Sun G, Mu M. 2011. Response of a grassland ecosystem to climate change in a theoretical model. Adv. Atmos. Sci., 28(6): 1 266–1 278.

    Article  Google Scholar 

  • Sutton R T, Hodson D L R. 2007. Climate response to basinscale warming and cooling of the North Atlantic Ocean. J. Climate, 20(5): 891–907.

    Article  Google Scholar 

  • Talley L D, Reid J L, Robbins P E. 2003. Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16(19): 3 213–3 226.

    Article  Google Scholar 

  • Te Raa L A, Dijkstra H A. 2002. Instability of the thermohaline ocean circulation on interdecadal timescales. J. Phys. Oceanogr., 32(1): 138–160.

    Article  Google Scholar 

  • Tziperman E, Ioannou P J. 2002. Transient growth and optimal excitation of thermohaline variability. J. Phys. Oceanogr., 32(12): 3 427–3 435.

    Article  Google Scholar 

  • Wang Q, Mu M, Dijkstra H A. 2011. Application of the conditional nonlinear optimal perturbation method to the predictability study of the kuroshio large meander. Adv. Atmos. Sci., 29(1): 118–134.

    Article  Google Scholar 

  • Wang Q, Mu M, Dijkstra H A. 2013. The similarity between optimal precursor and optimally growing initial error in prediction of Kuroshio large meander and its application to targeted observation. J. Geophys. Res., 118(2): 869–884.

    Article  Google Scholar 

  • Wang Y, Li S, Luo D. 2009. Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation. J. Geophys. Res. Atmos., 114: D02112, http://dx.doi.org/10.1029/2008JD010929.

    Article  Google Scholar 

  • Wu X, Mu M. 2009. Impact of wind-driven ocean gyres on the nonlinear stability of thermohaline circulation in a modified box model. J. Phys. Oceanogr., 39(3): 798–805.

    Article  Google Scholar 

  • Yu Y, Mu M, Duan W, Gong T. 2012a. Contribution of the location and spatial pattern of initial error to uncertainties in El Niño predictions. J. Geophys. Res., 117(c6), http://dx.doi.org/10.1029/2011JC007758.

    Google Scholar 

  • Yu Y, Mu M, Duan W. 2012b. Does model parameter error cause a significant “spring predictability barrier” for El Nino events in the zebiak-cane model? J. Climate, 25(4): 1 263–1 277.

    Article  Google Scholar 

  • Zanna L, Heimbach P, Moore A M, Tziperman E. 2012. Upperocean singular vectors of the North Atlantic climatewith implications for linear predictability and variability. Q. J. R. Meteorol. Soc., 138(663): 500–513.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu Mu  (穆穆).

Additional information

Supported by the National Basic Research Program of China (973 Program) (No. 2012CB417404.)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zu, Z., Mu, M. & Dijkstra, H.A. Optimal nonlinear excitation of decadal variability of the North Atlantic thermohaline circulation. Chin. J. Ocean. Limnol. 31, 1368–1374 (2013). https://doi.org/10.1007/s00343-014-3051-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-014-3051-4

Keyword