Abstract
Nonlinear development of salinity perturbations in the Atlantic thermohaline circulation (THC) is investigated with a three-dimensional ocean circulation model, using the conditional nonlinear optimal perturbation method. The results show two types of optimal initial perturbations of sea surface salinity, one associated with freshwater and the other with salinity. Both types of perturbations excite decadal variability of the THC. Under the same amplitude of initial perturbation, the decadal variation induced by the freshwater perturbation is much stronger than that by the salinity perturbation, suggesting that the THC is more sensitive to freshwater than salinity perturbation. As the amplitude of initial perturbation increases, the decadal variations become stronger for both perturbations. For salinity perturbations, recovery time of the THC to return to steady state gradually saturates with increasing amplitude, whereas this recovery time increases remarkably for freshwater perturbations. A nonlinear (advective) feedback between density and velocity anomalies is proposed to explain these characteristics of decadal variability excitation. The results are consistent with previous ones from simple box models, and highlight the importance of nonlinear feedback in decadal THC variability.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alexander J, Monahan A H. 2009. Nonnormal perturbation growth of pure thermohaline circulation using a 2D zonally averaged model. J. Phys. Oceanogr., 39(2): 369–386.
Belkin I M, Levitus S, Antonov J I, Malmberg S A. 1998. “Great salinity anomalies” in the North Atlantic. Prog. Oceanogr., 41(1): 1–68.
De Niet A, Wubs F, Scheltinga A T, Dijkstra H A. 2007. A tailored solver for bifurcation analysis of ocean-climate models. J. Comput. Phys., 227(1): 654–679.
Dijkstra H A, Oksuzoglu H, Wubs F W, Botta E F F. 2001. A fully implicit model of the three-dimensional thermohaline ocean circulation. J. Comput. Phys., 173(2): 685–715.
Dijkstra H A, Te Raa L T, Schmeits M, Gerrits J. 2006. On the physics of the Atlantic multidecadal oscillation. Ocean Dyn., 56(1): 36–50.
Duan W, Mu M, Wang B. 2004. Conditional nonlinear optimal perturbations as the optimal precursors for El Niño-Southern Oscillation events. J. Geophys. Res. Atmos., 109: D23105, http://dx.doi.org/10.1029/2004JD004756.
Duan W, Xu H, Mu M. 2008. Decisive role of nonlinear temperature advection in El Niño and La Niña amplitude asymmetry. J. Geophys. Res. Oceans, 113: C1104, http://dx.doi.org/10.1029/2006JC003974.
Duan W, Mu M. 2009. Conditional nonlinear optimal perturbation: applications to stability, sensitivity and predictability. Sci. China (D), 52(7): 883–906.
Duan W, Yu Y, Xu H, Zhao P. 2012. Behaviors of nonlinearities modulating the El Niño events induced by optimal precursory disturbances. Clim. Dynam., 40(5–6): 1 399–1 413.
Grossmann I, Klotzbach P J. 2009. A review of North Atlantic modes of natural variability and their driving mechanisms. J. Geophys. Res. Atmos., 11 4: D24107, http://dx.doi.org/10.1029/2009JD012728.
Jiang Z, Mu M, Wang D. 2009. Experiments of ensemble forecast by conditional nonlinear optimal perturbation. Sci. China (D), 52(4): 511–518.
Knight J R. 2005. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32(20): 2–5.
Knight J R, Folland C K, Scaife A A. 2006. Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 33: L17706, http://dx.doi.org/10.1029/2006GL026242
Monahan A H, Alexander J, Weaver A. 2008. Stochastic models of the meridional overturning circulation: time scales and patterns of variability. Philos. Trans. R. Soc., 366(1875): 2 527–2 544.
Mu M, Duan W, Wang B. 2003. Conditional nonlinear optimal perturbation and its applications. Nonlinear Proc. Geophys., 10(6): 493–501.
Mu M, Sun L, Dijkstra H A. 2004. The sensitivity and stability of the ocean’s thermohaline circulation to finite-amplitude perturbations. J. Phys. Oceanogr., 34(10): 2 305–2 315.
Mu M, Xu H, Duan W. 2007a. A kind of initial errors related to “spring predictability barrier” for El Niño event in Zebiak-Cane model. Geophys. Res. Lett., 34: L03709, http://dx.doi.org/10.1029/2006GL027412.
Mu M, Duan W, Wang B. 2007b. Season-dependent dynamics of nonlinear optimal error growth and ENSO predictability in a theoretical model. J. Geophys. Res., 112: D10113, http://dx.doi.org/10.1029/2005JD006981.
Mu M, Zhou F, Wang H. 2009. A method to identify the sensitive areas in targeting for tropical cyclone prediction: conditional nonlinear optimal perturbation. Mon. Wea. Rev., 137(5): 1 623–1 639.
Qin X, Mu M. 2011a. Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts. Q. J. R. Meteorol. Soc., 138(662): 185–197.
Qin X, Mu M. 2011b: A study on the reduction of forecast error variance by three adaptive observation approaches for tropical cyclone prediction. Mon. Wea. Rev., 139(7): 2 218–2 232.
Sévellec F, Jelloul M B, Huck T. 2007. Optimal surface salinity perturbations influencing the thermohaline circulation. J. Phys. Oceanogr., 37(12): 2 789–2 808.
Sévellec F, Huck T, Jelloul M B, Grima N. 2008. Optimal surface salinity perturbations of the meridional overturning and heat transport in a global ocean general circulation model. J. Phys. Oceanogr., 38(12): 2 739–2 754.
Sévellec F, Huck T, Jelloul M B, Vialard J. 2009. Nonnormal multidecadal response of the thermohaline circulation induced by optimal surface salinity perturbations. J. Phys. Oceanogr., 39(4): 852–872.
Sun L, Mu M, Sun D J, Yin X Y. 2005. Passive mechanism of decadal variation of thermohaline circulation. J. Geophys. Res. Oceans, 110: C07025, http://dx.doi.org/10.1029/2005JC002897.
Sun G, Mu M. 2011. Response of a grassland ecosystem to climate change in a theoretical model. Adv. Atmos. Sci., 28(6): 1 266–1 278.
Sutton R T, Hodson D L R. 2007. Climate response to basinscale warming and cooling of the North Atlantic Ocean. J. Climate, 20(5): 891–907.
Talley L D, Reid J L, Robbins P E. 2003. Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16(19): 3 213–3 226.
Te Raa L A, Dijkstra H A. 2002. Instability of the thermohaline ocean circulation on interdecadal timescales. J. Phys. Oceanogr., 32(1): 138–160.
Tziperman E, Ioannou P J. 2002. Transient growth and optimal excitation of thermohaline variability. J. Phys. Oceanogr., 32(12): 3 427–3 435.
Wang Q, Mu M, Dijkstra H A. 2011. Application of the conditional nonlinear optimal perturbation method to the predictability study of the kuroshio large meander. Adv. Atmos. Sci., 29(1): 118–134.
Wang Q, Mu M, Dijkstra H A. 2013. The similarity between optimal precursor and optimally growing initial error in prediction of Kuroshio large meander and its application to targeted observation. J. Geophys. Res., 118(2): 869–884.
Wang Y, Li S, Luo D. 2009. Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation. J. Geophys. Res. Atmos., 114: D02112, http://dx.doi.org/10.1029/2008JD010929.
Wu X, Mu M. 2009. Impact of wind-driven ocean gyres on the nonlinear stability of thermohaline circulation in a modified box model. J. Phys. Oceanogr., 39(3): 798–805.
Yu Y, Mu M, Duan W, Gong T. 2012a. Contribution of the location and spatial pattern of initial error to uncertainties in El Niño predictions. J. Geophys. Res., 117(c6), http://dx.doi.org/10.1029/2011JC007758.
Yu Y, Mu M, Duan W. 2012b. Does model parameter error cause a significant “spring predictability barrier” for El Nino events in the zebiak-cane model? J. Climate, 25(4): 1 263–1 277.
Zanna L, Heimbach P, Moore A M, Tziperman E. 2012. Upperocean singular vectors of the North Atlantic climatewith implications for linear predictability and variability. Q. J. R. Meteorol. Soc., 138(663): 500–513.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the National Basic Research Program of China (973 Program) (No. 2012CB417404.)
Rights and permissions
About this article
Cite this article
Zu, Z., Mu, M. & Dijkstra, H.A. Optimal nonlinear excitation of decadal variability of the North Atlantic thermohaline circulation. Chin. J. Ocean. Limnol. 31, 1368–1374 (2013). https://doi.org/10.1007/s00343-014-3051-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00343-014-3051-4


