Skip to main content
Log in

Interannual variations in energy conversion and interaction between the mesoscale eddy field and mean flow in the Kuroshio south of Japan

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Using 19-year satellite altimetric data, variations in the eddy kinetic energy, energy exchanges and interaction between the eddy field and mean flow are discussed for the Kuroshio south of Japan. In the seasonal cycle, the eddy kinetic energy level is a minimum in December/January and a maximum in April/May. In addition to seasonal variations, the eddy kinetic energy undergoes interannual changes. The energy transfers mainly from the mean flow to the eddy field in the Kuroshio south of Japan, and dominant energy exchanges mainly occur along the Kuroshio path south of Japan in each year from 1993 to 2011. In addition, there is often barotropic instability south of Honshu. Regarding interactions between the eddy field and mean flow, cyclonic and anticyclonic accelerations are also found along the Kuroshio path and they flank each other. There is cyclonic acceleration always imposed on southeast of Kyushu, and anticyclonic acceleration dominates south of Honshu from 2001 to mid-2005. Reynolds stress is used to explain the dynamic process of energy exchange. Furthermore, lag-correlation and linear regression analysis show that variability of the energy conversion rate and Reynolds stress involve responses to eddy acceleration at two time scales. The enhanced eddy acceleration induces large Reynolds stress, and enhanced Reynolds stress or barotropic instability further enforces energy transfer from the mean flow to the eddy field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akitomo K, Kurogi M. 2001. Path transition of the Kuroshio due to mesoscale eddies: a two-layer, wind-driven experiment. J. Oceanogr., 57: 735–741.

    Article  Google Scholar 

  • AVISO. 2008. SSALTO/DUCAS User Handbook: (M)SLA and (M)ADT Near-real Time and Delayed Time Products. Aviso Altimetry, Ramonville St. Agne, France. 32p.

    Google Scholar 

  • Berloff P, Meacham S P. 1998. On the stability of the winddriven circulation. J. Mar. Res., 56: 937–993.

    Article  Google Scholar 

  • Bernstein R L, White W B. 1981. Stationary and traveling mesoscale perturbations in the Kuroshio Extension current. J. Phys. Oceanogr., 11: 692–704.

    Article  Google Scholar 

  • Bernstein R L, White W B. 1982. Meridional eddy heat flux in the Kuroshio Extension current. J. Phys. Oceanogr., 12: 154–159.

    Article  Google Scholar 

  • Brooks I H, Niiler P P. 1977. Energetics of the Florida Current. J. Mar. Res., 35: 163–191.

    Google Scholar 

  • Cronin M, Watts D R. 1996. Eddy-mean flow interaction in the Gulf Stream at 68W. Part I: Eddy energetics. J. Phys. Oceanogr., 26: 2 107–2 130.

    Article  Google Scholar 

  • Cushman-Roisin B. 1994. Introduction to geostrophical fluid dynamics. Prentice Hall, Englewood Cliffs, N. J., 320pp.

    Google Scholar 

  • Dewar W K, Bane J. 1989a. Gulf stream dynamics. Part I: Eddy energetics at 73°W. J. Phys. Oceanogr., 19: 1 558–1 573.

    Article  Google Scholar 

  • Dewar W K, Bane J. 1989b. Gulf stream dynamics. Part II: Eddy energetics at 73°W. J. Phys. Oceanogr., 19: 1 574–1 587.

    Article  Google Scholar 

  • Ducet N, Le Traon P Y, Reverdin G. 2002. Global highresolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105: 19 477–19 498.

    Article  Google Scholar 

  • Ebuchi N, Hanawa K. 2000. Mesoscale eddies observed by TOLEX-ADCP and TOPEX/POSEIDON altimeter in the Kuroshio recirculation region south of Japan. J. Oceanogr., 56: 43–57.

    Article  Google Scholar 

  • Ebuchi N, Hanawa K. 2003. Influences of mesoscale eddies on variations of the Kuroshio path south of Japan. J. Oceanogr., 59: 25–36.

    Article  Google Scholar 

  • Endoh T, Hibiya T. 2001. Numerical simulation of the transient response of the Kuroshio leading to the large meander formation south of Japan. J. Geophys. Res., 106: 26 833–26 850.

    Article  Google Scholar 

  • Haidvogel D B, Rhines P B. 1983. Waves and circulation driven by oscillatory winds in an idealized ocean basin. Geophys. Astrophys. Fluid Dyn., 25: 1–63.

    Article  Google Scholar 

  • Hall M M. 1991. Energetics of the Kuroshio Extension at 35°N, 152°E. J. Phys. Oceanogr., 21: 958–975.

    Article  Google Scholar 

  • Hoskins B J, James I J, White G J. 1983. The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40: 1 595–1 612.

    Article  Google Scholar 

  • Kelly A K, Singh S, Huang R X. 1999. Seasonal variations of sea surface height in the Gulf stress region. J. Phys. Oceanogr., 29: 313–327.

    Article  Google Scholar 

  • Kobashi F, Hanawa K. 2000. Hydrographic features off the southeast coast of Kyushu during the Kuroshio small meanders: a case study for small meanders that occurred in 1994 and 1995 spring. J. Oceanogr., 60: 645–661.

    Article  Google Scholar 

  • Kobashi F, Hanawa K. 2004. Hydrographic features off the southeast coast of Kyushu during the Kuroshio small meanders, a case study for small meanders that occurred in 1994 and 1995 spring. J. Oceanogr., 60: 645–661.

    Article  Google Scholar 

  • Kobashi F, Kawamura H. 2001. Variation of sea surface height at periods of 65-220 days in the subtropical gyre of the North Pacific. J. Geophys. Res., 106: 26 817–26 831.

    Article  Google Scholar 

  • Kobashi F, Kawamura H. 2002. Seasonal variation and instability nature of the North Pacific subtropical countercurrent and the South China Sea. Chin. Sci. Bull., 52: 1 699–1 707.

    Google Scholar 

  • Le Traon P Y, Faugere Y, Hernandez F, Dorandeu J, Mertz F, Ablain M. 2003. Can we merge GEOSAT Follow-On with TOPEX/Poseidon and ERS-2 for an improved description of the ocean circulation? J. Atmos. Oceanic. Technol., 20: 889–895.

    Article  Google Scholar 

  • Lee D K, Niiler P P. 2005. The energetic surface circulation patterns of the Japan/East Sea. Deep Sea Res., Part II, 52: 1 547–1 563.

    Article  Google Scholar 

  • Masumoto Y. 2004. Generation of small meanders of the Kuroshio south of Kyushu in a high-resolution ocean general circulation model. J. Oceanogr., 60: 313–320.

    Article  Google Scholar 

  • Mitsudera H, Waseda T, Yoshikawa Y, Taguchi B. 2001. Anticyclonic eddies and Kuroshio meander formation. Geophys. Res. Lett., 28: 2 025–2 028.

    Article  Google Scholar 

  • Miyazawa Y, Guo X Y, Yamagata T. 2004. Roles of mesoscale eddies in the Kuroshio paths. J. Phys. Oceanogr., 34: 2 203–2 222.

    Article  Google Scholar 

  • Nishida H, White W B. 1982. Horizontal eddy fluxes of momentum and kinetic energy in the near-surface of the Kuroshio Extension. J. Phys. Oceanogr., 12: 160–170.

    Article  Google Scholar 

  • Oliveira L R, Piola A R, Mata M M, Soares I D. 2009. Brazil current surface circulation and energetics observed from drifting buoys. J. Geophys. Oceanogr., 114. http://dx.doi.org/10.1029/2008JC004900.

  • Pedlosky J. 1987. Geophysical Fluid Dynamics, 2 nd ed. Springer, New York. 710pp.

    Book  Google Scholar 

  • Qiu B. 1999. Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr., 29: 2 471–2 486.

    Article  Google Scholar 

  • Qiu B, Chen S M. 2010. Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deepsea Res.-II, 57: 1 098–1 110.

    Article  Google Scholar 

  • Qiu B, Miao W. 2000. Kuroshio path variations south of Japan: bimodality as a self-sustained oscillation. J. Phys. Oceanogr., 30: 2 124–2 137.

    Article  Google Scholar 

  • Rio M H, Hernandez F. 2004. A mean dynamic topography computed over the world ocean from alimetry, in situ measurements, and a geoid model. J. Geophys. Oceanogr., 109. http://dx.doi.org/10.1029/2003JC002226.

  • Shimokawa S, Matsuura T. 2010. Chaotic behaviors in the response of a quasigeostrophic oceanic double gyre to seasonal forcing. J. Phys. Oceanogr., 40: 1 458–1 472.

    Article  Google Scholar 

  • Szabo D, Weatherly G L. 1979. Energetics of the Kuroshio south of Japan. J. Mar. Res., 37: 531–556.

    Google Scholar 

  • Tai C K, White W B. 1990. Eddy variability in the Kuroshio Extension as revealed by geosat altimetry: energy propagation away from the jet, Reynolds stress, and seasonal cycle. J. Phys. Oceanogr., 20: 1 761–1 777.

    Article  Google Scholar 

  • Usui N, Tsuijno H, Fujii Y, Kamachi M. 2008. Generation of a trigger meander for the 2004 Kuroshio larger meander. J. Geophys. Res., 113, http://dx.doi.org/10.1029/2007JC004266.

  • Usui N, Tsuijno H, Nakano H, Fujii Y, Kamachi M. 2011. Decay mechanism of the 2004/05 Kuroshio large meander. J. Geophys. Res., 116, http://dx.doi.org/10.1029/2011JC007009.

  • Waseda T, Mitsudera H, Taguchi B, Yoshikawa Y. 2003. On the eddy-Kuroshio interaction: meander formation process. J. Geophys. Res., 108, http://dx.doi.org/10.1029/2002JC001583

  • Wilson W S, Dugan J P. 1978. Mesoscale thermal variability in the vicinity of the Kuroshio Extension. J. Phys. Oceanogr., 8: 537–540.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libin Ma  (马利斌).

Additional information

Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-EW-201) and the Basic Research Program of Science and Technology Projects of Qingdao (No. 11-1-4-95-jch)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, L., Wang, Q. Interannual variations in energy conversion and interaction between the mesoscale eddy field and mean flow in the Kuroshio south of Japan. Chin. J. Ocean. Limnol. 32, 210–222 (2014). https://doi.org/10.1007/s00343-014-3036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-014-3036-3

Keyword

Navigation