Skip to main content
Log in

Optimal precursor of the transition from Kuroshio large meander to straight path

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

We used the conditional nonlinear optimal perturbation (CNOP) method to explore the optimal precursor of the transition from Kuroshio large meander (LM) to straight path within a barotropic inflowout-flow model, and found that large amplitudes of the optimal precursor are mainly located in the east of Kyushu, which implies that perturbations in the region are important for the transition from LM to straight path. Furthermore, we investigated the transition processes caused by the optimal precursor, and found that these processes could be divided into three stages. In the first stage, a cyclonic eddy is advected to the formation region of the Kuroshio large meander, which enhances the LM path and causes a cyclonic eddy to shed from the Kuroshio mainstream. This process causes the LM path to change into a small meander path. Subsequently, the small meander is maintained for a period because the vorticity advection is balanced by the beta effect in the second stage. In the third stage, the small meander weakens and the straight path ultimately forms. The positive vorticity advecting downstream is responsible for this process. The exploration of the optimal precursor will conduce to improve the prediction of the transition processes from LM path to straight path, and its spatial structure can be used to guide Kuroshio targeted observation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akitomo K, Awaji T, Imasato N. 1991. Kuroshio path variation south of Japan: 1. Barotropic inflow-outflow model. J. Geophys. Res., 96: 2 549–2 560.

    Article  Google Scholar 

  • Akitomo K, Masuda S, Awaji T. 1997. Kuroshio path variation south of Japan: stabiltiy of the paths in a multiple equilibrium regime. J. Oceanogr., 53: 129–142.

    Google Scholar 

  • Baehr J, McInerney D, Keller K, Marotzke J. 2008. Optimization of an observing system design for the north Atlantic meridional overturning circulation. J. Atmos. Oceanic Technol., 25: 625–634.

    Article  Google Scholar 

  • Birgin E G, Martinez J M, Raydan M. 2000. Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optimiz., 10: 1 196–1 211.

    Article  Google Scholar 

  • Dong C M, Zhang Q H. 1995. Dynamic studies of Kuroshio bimodal characteristics. Acta Oceanologica Sinica, 17(1): 130–136. (in Chinese with English abstract)

    Google Scholar 

  • Duan W S, Yu Y S, Xu H, Zhao P. 2012. Behaviors of nonlinearities modulating El Niño events induced by optimal precursory disturbance. Climate Dynamics, http://dx.doi.org/10.1007/s00382-012-1557-z

    Google Scholar 

  • Fujii Y, Tsujino H, Usui N, Nakano H, Kamachi M. 2008. Application of singular vector analysis to the Kuroshio large meander. J. Geophys. Res., 113, http://dx.doi.org/10.1029/2007JC004476.

  • Ishikawa Y, Awaji T, Komori N, Toyoda T. 2004. Application of sensitivity analysis using an adjoint model for shortrange forecasts of the Kuroshio path south of Japan. J. Oceanogr., 60: 293–301.

    Article  Google Scholar 

  • Kamachi M, Kuragano T, Sugimoto S, Yoshita K, Sakurai T, Nakano T, Usui N, Uboldi F. 2004. Short-range prediction experiments with operational data assimilation system for the Kuroshio south of Japan. J. Oceanogr., 60: 269–282.

    Article  Google Scholar 

  • Kawabe M. 1985. Sea level variations at the Izu Islands and typical stable paths of the Kuroshio. J. Oceanogr. Soc. Japan, 41: 307–326.

    Article  Google Scholar 

  • Kawabe M. 1995. Variations of current path, velocity, and volume transport of the Kuroshio in relation with the large meander. J. Phys. Oceanogr., 25: 3 103–3 117.

    Article  Google Scholar 

  • Komori N, Awaji T, Ishikawa Y, Kuragano T. 2003. Shortrange forecast experiments of the Kuroshio path variabilities south of Japan using TOPEX/Poseidon altimetric data. J. Geophys. Res., 108: 3 010, http://dx.doi.org/10.1029/2001JC001282.

    Article  Google Scholar 

  • Kramer W, Dijkstra H A, Pierini S, Leeuwen P J. 2012. Measuring the impact of observations on the predictability of the Kuroshio extension in a shallow-water model. J. Phys. Oceanogr., 42: 3–17.

    Article  Google Scholar 

  • Liu Y M. 2008. Maximum principle of conditional optimal nonlinear perturbation. Journal of East China Normal University (Natural Science), 2: 131–134. (in Chinese with English abstract)

    Google Scholar 

  • Masuda A. 1982. An interpretation of the bimodal character of the stable Kuroshio path. Deep-sea Res., 29: 471–484.

    Article  Google Scholar 

  • Mitsudera H, Taguchi B, Waseda T, Yoshikawa Y. 2006. Blocking of the Kuroshio large meander by baroclinic interaction with the Izu Ridge. J. Phys. Oceanogr., 36: 2 042–2 059.

    Article  Google Scholar 

  • Miyazawa Y, Yamane S, Guo X, Yamagata T. 2005. Ensemble forecast of the Kuroshio meandering. J. Geophys. Res., 110: http://dx.doi.org/10.1029/2004JC002426.

  • Mu M, Duan W S, Wang B. 2003. Conditional nonlinear optimal perturbation and its applications. Nonlinear Process. Geophys., 10: 493–501.

    Article  Google Scholar 

  • Mu M, Sun L, Dijkstra H A. 2004. The sensitivity and stability of the ocean’s thermocline circulation to finite amplitude freshwater perturbations. J. Phys. Oceanogr., 34: 2 305–2 315.

    Article  Google Scholar 

  • Nishida H. 1982. Description of the Kuroshio meander in 1975–1980-Large meander of the Kuroshio in 1975–1980. Rep. Hydrogr. Res., 17: 181–207.

    Google Scholar 

  • Qin X H, Mu M. 2011. A study on the reduction of forecast error variance by three adaptive observation approaches for tropical cyclone prediction. Mon. Wea. Rev., 139: 2 218–2 232.

    Article  Google Scholar 

  • Qiu B, Miao W. 2000. Kuroshio path variations south of Japan: bimodality as a self-sustained internal oscillation. J. Phys. Oceanogr., 30: 2 124–2 137.

    Google Scholar 

  • Schmeits M J, Dijkstra H A. 2001. Bimodal Behavior of the Kuroshio and the gulf stream. J. Phys. Oceanogr., 31: 3 435–3 456.

    Article  Google Scholar 

  • Sekine Y. 1993. Topographic effect of a marine ridge on the spin-down of a cyclonic eddy with mean flow. J. Oceanogr., 49: 593–606.

    Article  Google Scholar 

  • Shi M C. 2004. Physical Oceanography. Shandong Education Press, Jinan, China. 462p. (in Chinese)

    Google Scholar 

  • Taft B A. 1972. Characteristics of the Flow of the Kuroshio South of Japan. Kuroshio-Its Physical Aspects. In: Stommel H, Yoshida K eds. University of Tokyo Press. p.165–216.

  • Terwisscha van Scheltinga, A D, Dijkstra H A. 2008. Conditional nonlinear optimal perturbations of the double-gyre ocean circulation. Nonlin. Process Geophys., 15: 727–734.

    Article  Google Scholar 

  • Tsujino H, Usui N, Nakano H. 2006. Dynamics of Kuroshio path variations in a high resolution general circulation model. J. Geophys. Res., 111: C11001, http://dx.doi.org/10.1029/2005JC003118.

    Article  Google Scholar 

  • Usui N, Tsujino H, Fujii Y, Kamachi M. 2006. Short-range prediction experiments of the kuroshio path variabilities south of Japan. Ocean Dynamics, 56: 607–623.

    Article  Google Scholar 

  • Usui N, Tsujino H, Nakano H, Fujii Y, Kamachi M. 2011. Decay mechanism of the 2004/05 Kuroshio large meander. J. Geophys. Res., 116: C10010, http://dx.doi.org/10.1029/2011JC007009.

    Article  Google Scholar 

  • Wang Q, Mu M, Dijkstra H A. 2012. Application of conditional nonlinear optimal perturbation method to the predictability study of the Kuroshio large meander. Adv. Atmos. Sci., 29: 118–134.

    Article  Google Scholar 

  • Waseda T, Mitsudera H, Taguchi B, Yoshikawa Y. 2002. On the eddy-Kuroshio interaction: evolution of mesoscale eddy. J. Geophys. Res., 107(C8): 3 088, http://dx.doi.org/10.1029/2000JC000756.

    Article  Google Scholar 

  • Waseda T, Mitsudera H, Taguchi B, Yoshikawa Y. 2003. On the eddy-Kuroshio interaction: Meander formation process. J. Geophys. Res., 108(C7): 3 220, http://dx.doi.org/10.1029/2002JC001583.

    Article  Google Scholar 

  • Xu H, Tokinaga H, Xie S P. 2010. Atmospheric effects of the Kuroshio large meander during 2004–05. J. Climate., 23: 4 704–4 715.

    Google Scholar 

  • Xu Q Q, Wang Q, Ma L B. 2012. The optimal precursor of the occurrence of Kuroshio meander path and its development mechanism. Marine Sciences, in press. (in Chinese with English abstract)

    Google Scholar 

  • Yasuda I, Yoon J H, Suginohara N. 1985. Dynamics of the Kuroshio large meander—Barotropic model. J. Oceanogr. Soc. Japan, 41: 259–273.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libin Ma  (马利斌).

Additional information

Supported by the National Natural Science Foundation of China (No. 41230420), the National Basic Research Program of China (973 Program) (No. 2012CB417403), the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-EW-201), the Basic Research Program of Science and Technology Projects of Qingdao (No. 11-1-4-95-jch), and the Open Fund of LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Ma, L. & Xu, Q. Optimal precursor of the transition from Kuroshio large meander to straight path. Chin. J. Ocean. Limnol. 31, 1153–1161 (2013). https://doi.org/10.1007/s00343-013-2301-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-013-2301-1

Keyword

Navigation