Skip to main content
Log in

Phytoplankton size class derived from phytoplankton absorption and chlorophyll-a concentrations in the northern South China Sea

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

A previously developed model was modified to derive three phytoplankton size classes (micro-, nano-, and pico-phytoplankton) from the overall chlorophyll-a concentration, assuming that each class has a specific absorption coefficient. The modified model performed well using in-situ data from the northern South China Sea, and the results were reliable and accurate. The relative errors of the size-fractioned chlorophyll-a concentration for each size class were: micro-: 21%, nano-: 41%, pico-: 26%, and nano+pico: 23%. The model was then applied on ocean color remote sensing data to examine the distribution and variation of phytoplankton size classes in northern South China Sea on a large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken J, Fishwick J R, Lavender S et al. 2007. Validation of MERIS reflectance and chlorophyll during the bencal cruise October 2002: preliminary validation of new demonstration products for phytoplankton functional types and photosynthetic parameters. International Journal of Remote Sensing, 28(3–4): 497–516.

    Article  Google Scholar 

  • Babin M, Stramski D, Ferrari G M et al. 2003. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. Journal of Geophysical Research, 108(C7), http://dx.doi.org/10.1029/2001jc000882.

    Google Scholar 

  • Bailey S W, Werdell P J. 2006. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sensing of Environment, 102(1–2): 12–23.

    Article  Google Scholar 

  • Brewin R J W, Hardman-Mountford N J, Lavender S J et al. 2011. An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing. Remote Sensing of Environment, 115(2): 325–339.

    Article  Google Scholar 

  • Brewin R J W, Lavender S J, Hardman-Mountford N J et al. 2010a. A spectral response approach for detecting dominant phytoplankton size class from satellite remote sensing. Acta Oceanologica Sinica, 29(2): 14–32.

    Article  Google Scholar 

  • Brewin R J W, Sathyendranath S, Hirata T et al. 2010. A threecomponent model of phytoplankton size class for the Atlantic Ocean. Ecological Modelling, 221(11): 1 472–1 483.

    Article  Google Scholar 

  • Bricaud A, Babin M, Morel A et al. 1995. Variability in the chlorophyll-specifc absorption coefficients of natural phytoplankton: analysis and parameterization. Journal of Geophysical Research, 100: 13 321–13 332.

    Article  Google Scholar 

  • Bricaud A, Claustre H, Ras J et al. 2004. Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. Journal of Geophysical Research, 109(C11010), http://dx.doi.org/10.1029/2004JC002419.

    Google Scholar 

  • Bricaud A, Mejia C, Biondeau-Patissier D et al. 2007. Retrieval of pigment concentrations and size structure of algal populations from their absorption spectra using multilayered perceptrons. Applied Optics, 46(8): 1 251–1 260.

    Article  Google Scholar 

  • Bricaud A, Morel A, Babin M et al. 1998. Variation of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models. Journal of Geophysical Research, 103(C13): 31 033–31 044.

    Article  Google Scholar 

  • Bricaud A, Stramski D. 1990. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea. Limnology and Oceanography, 35(3): 562–582.

    Article  Google Scholar 

  • Cai Y M, Ning X R, Liu C G. 2002. Studies on primary production and new production of the Zhujiang Estuary, China. Acta Ecologica Sinica, 24(3): 101–111. (in Chinese with English abstract)

    Google Scholar 

  • Cao W X, Yang Y Z, Liu S et al. 2005. Spectral absorption coefficient of phytoplankton and its relation to chlorophyll a and remote sensing reflectance in coastal waters of southern China. Progress in Natural Science, 15(4): 342–350.

    Article  Google Scholar 

  • Cao W X, Yang Y Z, Xu X Q et al. 2003. Regional patterns of particulate spectral absorption in the Pearl River Estuary. Chinese Science Bulletin, 48(21): 23–44.

    Article  Google Scholar 

  • Chen B Z, Wang L, Song S Q et al. 2011. Comparisons of picophytoplankton abundance, size, and fluorescence between summer and winter in northern South China Sea. Continental Shelf Research, 31(14): 1 527–1 540.

    Article  Google Scholar 

  • Chen J X, Huang B Q, Liu Y et al. 2006. Phytoplankton community structure in the transects across East China Sea and northern South China Sea determined by analysis of HPLC photosynthetic pigment signatures. Advances in Earth Science, 21(7): 738–746. (in Chinese with English abstract)

    Google Scholar 

  • Chen Y L L, Chen H Y. 2006. Seasonal dynamics of primary and new production in the northern South China Sea: the significance of river discharge and nutrient advection. Deep Sea Research Part I: Oceanographic Research Papers, 53(6): 971–986.

    Article  Google Scholar 

  • Ciotti A M, Bricaud A. 2006. Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil. Limnology and Oceanography-Methods, 4: 237–253.

    Article  Google Scholar 

  • Ciotti A M, Cullen J J, Lewis M R. 2002. Assessment of the relationships between dominant cell size in natural hytoplankton communities and the spectral shape of the absorption coefficien. Limnology and Oceanography, 47: 404–417.

    Article  Google Scholar 

  • Cleveland J S. 1995. Regional models for phytoplankton absorption as a function of chlorophyll a concentration. Journal of Geophysical Research, 100: 13 333–13 344.

    Article  Google Scholar 

  • Dai M H, Zhai W D, Cai W J et al. 2008. Effects of an estuarine plume-associated bloom on the carbonate system in the lower reaches of the Pearl River Estuary and the coastal zone of the northern South China Sea. Continental Shelf Research, 28(12): 1 416–1 423.

    Article  Google Scholar 

  • Devred E, Sathyendranath S, Stuart V et al. 2006. A two-component model of phytoplankton absorption in the open ocean: theory and applications. Journal of Geophysical Research, 111(C3), http://dx.doi.org/10.1029/2005jc002880.

    Google Scholar 

  • Devred E, Sathyendranath S, Stuart V et al. 2011. A three component classification of phytoplankton absorption spectra: application to ocean-color data. Remote Sensing of Environment, 115(9): 2 255–2 266.

    Article  Google Scholar 

  • Fujiwara A, Hirawake T, Suzuki K et al. 2011. Remote sensing of size structure of phytoplankton communities using optical properties of the Chukchi and Bering Sea shelf region. Biogeosciences Discussions, 8(3): 4 985–5 017.

    Article  Google Scholar 

  • Gan J P, Li L, Wang D X et al. 2009. Interaction of a river plume with coastal upwelling in the northeastern South China Sea. Continental Shelf Research, 29(4): 728–740.

    Article  Google Scholar 

  • Hirata T, Aiken J, Hardman-Mountford N et al. 2008. An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sensing of Environment, 112(6): 3 153–3 159.

    Article  Google Scholar 

  • Huang B Q, Liu X J, Liu Y et al. 2002. Ecological study of picoplankton in northern South China Sea. Chinese Journal of Oceanology and Limnology, 20 (special issue): 22–23.

    Article  Google Scholar 

  • Ke Z X, Huang L M, Tan Y H et al. 2011. Species composition and abundance of phytoplankton in the northern South China Sea in summer 2007. Journal of Tropical Oceanography, 30(1): 131–143. (in Chinese with English abstract)

    Google Scholar 

  • Kishino M, Takahashi M, Okami N et al. 1985. Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bulletin of Marine Science, 37(2): 634–642.

    Google Scholar 

  • Kostadinov T S, Siegel D A, Maritorena S. 2009. Retrieval of the particle size distribution from satellite ocean color observations. Journal of Geophysical Research, 114(C9), http://dx.doi.org/10.1029/2009jc005303.

    Google Scholar 

  • Kutser T, Metsamaa L, Strömbeck N et al. 2006. Monitoring cyanobacterial blooms by satellite remote sensing. Estuarine, Coastal and Shelf Science, 67(1–2): 303–312.

    Article  Google Scholar 

  • Le F F, Ning X R, Liu C G et al. 2008. Standing stock and production of phytoplankton in the northern South China Sea during winter of 2006. Acta Ecologica Sinica, 28(11): 5 775–5 784. (in Chinese with English abstract)

    Google Scholar 

  • Liang S J, Cao W X, Wang G F et al. 2010. Retrieval of phytoplankton size parameter from phytoplankton absorption spectra. Journal of Tropical Oceanography, 29(2): 59–64. (in Chinese with English abstract)

    Google Scholar 

  • Mitchell G, Bricaud A, Carder K L et al. 2000. Determination of spectral absorption coefficients of particles, dissolved material, and phytoplankton for discrete water samples. In: Fargion G S, Mueller J L eds. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, NASA/TM 2000-209966. NASA Goddard Space Flight Center, Greenbelt, Maryland. p.125–153.

    Google Scholar 

  • Morales J, Stuart V, Platt T et al. 2011. Handbook of Satellite Remote Sensing Image Interpretation: Applications for Marine Living Resources Conservation and Management. EU PRESPO and IOCCG, Dartmouth, Canada. 303p.

    Google Scholar 

  • Morel A, Andre J M. 1991. Pigment distribution and primary production in the western Mediterranean as derived and modeled from coastal zone color scanner observations. Journal of Geophysical Research, 96(C7): 12 685–12 698.

    Article  Google Scholar 

  • Morel A, Bricaud A. 1981. Theoretical results concerning light-absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Sea Research Part A: Oceanographic Research Papers, 28(11): 1 375–1 393.

    Article  Google Scholar 

  • Ning X R, Cai Y M, Li G W et al. 2003. Photosynthetic picoplankton in the northern South China Sea. Acta Ecologica Sinica, 25(3): 83–97. (in Chinese with English abstract)

    Google Scholar 

  • Ning X, Chai F, Xue H J et al. 2004. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea. Journal of Geophysical Research, 109(C10), http://dx.doi.org/doi:10.1029/2004JC002365.

    Google Scholar 

  • Parsons T R, Maita Y, Lalli C M A. 1984. Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford. 187p.

    Google Scholar 

  • Platt T, Sathyendranath S. 2008. Ecological indicators for the pelagic zone of the ocean from remote sensing. Remote Sensing of Environment, 112(8): 3 426–3 436.

    Google Scholar 

  • Quere C L, Harrison S P, Prentice C et al. 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change Biology, 11(11): 2 016–2 040.

    Google Scholar 

  • Raitsos D E, Lavender S J, Maravelias C D et al. 2008. Identifying four phytoplankton functional types from space: an ecological approach. Limnology and Oceanography, 53(2): 605–613.

    Article  Google Scholar 

  • Roesler C S. 1998. Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique. Limnology and Oceanography, 43(7): 1 649–1 660.

    Article  Google Scholar 

  • Sathyendranath S, Cota G, Stuart V et al. 2001. Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches. International Journal of Remote Sensing, 22(2–3): 249–273.

    Article  Google Scholar 

  • Sathyendranath S, Lazzara L, Prieur L. 1987. Variations in the spectral values of specific absorption of phytoplankton. Limnology and Oceanography, 32(2): 403–415.

    Article  Google Scholar 

  • Shang S L, Li L, Sun F Q et al. 2008. Changes of temperature and bio-optical properties in the South China Sea in response to Typhoon Lingling, 2001. Geophysical Research Letters, 35(10), http://dx.doi.org/10.1029/2008gl033502.

    Google Scholar 

  • Sieburth J M, Smetacek V, Lenz J. 1978. Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnology and Oceanography, 23(6): 1 256–1 263.

    Article  Google Scholar 

  • Silió-Calzada A, Bricaud A, Uitz J et al. 2008. Estimation of new primary production in the Benguela upwelling area, using ENVISAT satellite data and a model dependent on the phytoplankton community size structure. Journal of Geophysical Research, 113(C11), http://dx.doi.org/10.1029/2007jc004588.

    Google Scholar 

  • Uitz J, Claustre H, Griffiths F B et al. 2009. A phytoplankton class-specific primary production model applied to the Kerguelen Islands region (Southern Ocean). Deep Sea Research Part I: Oceanographic Research Papers, 56(4): 541–560.

    Article  Google Scholar 

  • Uitz J, Claustre H, Morel A et al. 2006. Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll. Journal of Geophysical Research, 111(C8), http://dx.doi.org/10.1029/2005jc003207.

    Google Scholar 

  • Wang G F, Cao W X, Xu D Z et al. 2005. Variations in specific absorption coefficients of phytoplankton in northern South China Sea. Journal of Tropical Oceanography, 24(5): 1–10. (in Chinese with English abstract)

    Google Scholar 

  • Wang G F, Cao W X, Xu D Z et al. 2007. Effects of size structure and pigment composition of algal population on phytoplankton absorption coefficients in the South China Sea. Acta Ecologica Sinica, 29(1): 38–48. (in Chinese with English abstract)

    Google Scholar 

  • Wang G F, Cao W X, Yang D T et al. 2008. Variation in downwelling diffuse attenuation coefficient in the northern South China Sea. Chinese Journal of Oceanology and Limnology, 26(3): 323–333.

    Article  Google Scholar 

  • Wang G F, Cao W X, Zhou W et al. 2010. Retrieval of phytoplankton size structure based on the spectral slope of phytoplankton absorption in the northern South China Sea. Journal of Tropical Oceanography, 29(2): 25–32. (in Chinese with English abstract)

    Google Scholar 

  • Wu J Y, Hong H S, Shang S L et al. 2009. A preliminary study of the variation of phytoplankton absorption coefficients in the northern South China Sea. Acta Oceanologica Sinica, 28(5): 17–29.

    Google Scholar 

  • Zhai H C, Ning X R, Tang X X et al. 2011. Phytoplankton pigment patterns and community composition in the northern South China Sea during winter. Chinese Journal of Oceanology and Limnology, 29(2): 233–245.

    Article  Google Scholar 

  • Zhou W, Cao W X, Li C et al. 2010a. Effects of algal cell structure on the optical properties of phytoplankton. Journal of Tropical Oceanography, 29(2): 33–38. (in Chinese with English abstract)

    Google Scholar 

  • Zhou W, Cao W X, Wang G F et al. 2010b. Retrieval of pigment concentrations from the absorption spectra of phytoplankton by multilayered perceptrons. Journal of Tropical Oceanography, 29(2): 36–51. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxi Cao  (曹文熙).

Additional information

Supported by the National Natural Science Foundation of China (Nos. U0933005, 41076014, 40906021, 41176035) and the National High Technology Research and Development Program of China (863 Program) (No. 2007AA092001-02)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Cao, W., Wang, G. et al. Phytoplankton size class derived from phytoplankton absorption and chlorophyll-a concentrations in the northern South China Sea. Chin. J. Ocean. Limnol. 31, 750–761 (2013). https://doi.org/10.1007/s00343-013-2291-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-013-2291-z

Keyword

Navigation